BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-31-2013, 12:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular composition of recycled organic wastes, as determined by solid-state (13)C NMR and elemental analyses.

Molecular composition of recycled organic wastes, as determined by solid-state (13)C NMR and elemental analyses.

Molecular composition of recycled organic wastes, as determined by solid-state (13)C NMR and elemental analyses.

Waste Manag. 2013 Jul 26;

Authors: Eldridge SM, Chen CR, Xu ZH, Nelson PN, Boyd SE, Meszaros I, Chan KY


Abstract
Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Ionization Behavior of Polyphosphoinositides Determined via the Preparation of pH Titration Curves Using Solid-State (31)P NMR.
Ionization Behavior of Polyphosphoinositides Determined via the Preparation of pH Titration Curves Using Solid-State (31)P NMR. Ionization Behavior of Polyphosphoinositides Determined via the Preparation of pH Titration Curves Using Solid-State (31)P NMR. Methods Mol Biol. 2013;1009:129-42 Authors: Graber ZT, Kooijman EE Abstract Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by...
nmrlearner Journal club 0 05-18-2013 09:42 PM
[NMR paper] Structural Investigations of Molecular Machines by Solid-State NMR.
Structural Investigations of Molecular Machines by Solid-State NMR. Related Articles Structural Investigations of Molecular Machines by Solid-State NMR. Acc Chem Res. 2013 Mar 15; Authors: Loquet A, Habenstein B, Lange A Abstract Essential biological processes such as cell motion, signaling,protein synthesis, and pathogen-host interactions rely on multifunctional molecular machines containing supramolecular assemblies, that is, noncovalently assembled protein subunits. Scientists would like to acquire a detailed atomic view of the complete...
nmrlearner Journal club 0 03-19-2013 01:22 PM
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR Abstract Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-13C2-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (~120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the...
nmrlearner Journal club 0 05-29-2012 01:00 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Biochim Biophys Acta. 2010 Dec 28; Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
nmrlearner Journal club 0 01-05-2011 09:51 PM
[NMR paper] Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spec
Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy. Related Articles Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy. J Mol Biol. 2004 Aug 13;341(3):869-79 Authors: Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, Opella SJ The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature. 2002 Nov 7;420(6911):98-102 Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Evolution of organic matter during composting of different organic wastes assessed by
Evolution of organic matter during composting of different organic wastes assessed by CPMAS (13)C NMR spectroscopy. Related Articles Evolution of organic matter during composting of different organic wastes assessed by CPMAS (13)C NMR spectroscopy. Waste Manag. 2010 Oct 19; Authors: Caricasole P, Provenzano MR, Hatcher PG, Senesi N In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS (13)C NMR spectroscopy measured during...
nmrlearner Journal club 0 10-23-2010 05:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:45 PM.


Map