BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] The mitochondrial precursor protein apocytochrome c strongly influences the order of (http://www.bionmr.com/forum/journal-club-9/mitochondrial-precursor-protein-apocytochrome-c-strongly-influences-order-6057/)

nmrlearner 08-21-2010 10:48 PM

The mitochondrial precursor protein apocytochrome c strongly influences the order of
 
The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A 2H and 31P NMR study.

Related Articles The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A 2H and 31P NMR study.

Biochemistry. 1990 Mar 6;29(9):2312-21

Authors: Jordi W, de Kroon AI, Killian JA, de Kruijff B

Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-[2-2H1]serine) and acyl chain deuterated (1,2-[11,11-2H2]dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. 2H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The lipid structures corresponding to these two components could be separated by sucrose gradient centrifugation, demonstrating the existence of two macroscopic phases. In mixtures of phosphatidylserine and phosphatidylcholine similar effects are observed. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. In contrast, binding of the mature protein, cytochrome c, to acyl chain deuterated phosphatidylserine dispersions has no effect on the deuterium and phosphorus nuclear magnetic resonance spectra, thereby demonstrating precursor-specific perturbation of the phospholipid order. The inability of holocytochrome c to perturb the phospholipid order is due to folding of this protein, since unfolding of cytochrome c by heat or urea treatment results in similar effects on dioleoylphosphatidylserine bilayers, as observed for the unfolded precursor. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.

PMID: 2159798 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 01:41 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013