BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-11-2020, 06:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,169
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle [Biophysics and Computational Biology]

A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle [Biophysics and Computational Biology]

Gili Abramov, Algirdas Velyvis, Enrico Rennella, Leo E. Wong, Lewis E. Kay...
Date: 2020-06-09

The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)–based NMR methods, in concert with robust strategies for incorporation of methyl-group probes of structure and dynamics into the protein of interest, has facilitated quantitative studies of high-molecular-weight protein complexes. Here we develop a one-pot in vitro reaction for producing NMR quantities of methyl-labeled... Read More


PNAS:
Number: 23
Volume: 117
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle.
A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Related Articles A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc Natl Acad Sci U S A. 2020 May 26;: Authors: Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE Abstract The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)-based NMR methods, in concert with robust strategies for incorporation of methyl-group...
nmrlearner Journal club 0 05-29-2020 04:59 PM
Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR [Biophysics and Computational Biology]
Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR Enrico Rennella, Rui Huang, Zanlin Yu, Lewis E. Kay... Date: 2020-03-10 The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from... Read More PNAS: Number: 10
nmrlearner Journal club 0 03-16-2020 04:59 PM
Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy [Biophysics and Computational Biology]
Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy Rui Huang, Felipe Perez, Lewis E. Kay... Date: 2017-11-14 The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of... Read More PNAS: Number: 46
nmrlearner Journal club 0 11-15-2017 08:36 AM
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience <img alt="" height="1" width="1"> Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins SelectScience Labeling schemes commonly employed for NMR investigations of high-molecular-weight proteins utilize selective incorporation of protons and 13C isotopes into methyl groups of Ileδ1, Leuδ and Valγ side-chains in a highly deuterated environment (commonly ... Read here
nmrlearner Online News 0 08-09-2017 09:26 AM
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience <img alt="" height="1" width="1"> Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins SelectScience Labeling schemes commonly employed for NMR investigations of high-molecular-weight proteins utilize selective incorporation of protons and 13C isotopes into methyl groups of Ileδ1, Leuδ and Valγ side-chains in a highly deuterated environment (commonly ... Read here
nmrlearner Online News 0 08-08-2017 10:10 AM
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience <img alt="" height="1" width="1"> Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins SelectScience Labeling schemes commonly employed for NMR investigations of high-molecular-weight proteins utilize selective incorporation of protons and 13C isotopes into methyl groups of Ileδ1, Leuδ and Valγ side-chains in a highly deuterated environment (commonly ... Read here
nmrlearner Online News 0 08-07-2017 07:31 PM
Methyl-TROSY NMR studies of proteasome allostery [Biophysics and Computational Biology]
Methyl-TROSY NMR studies of proteasome allostery Ruschak, A. M., Kay, L. E.... Date: 2012-12-11 Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is... Read More PNAS: Number: 50
nmrlearner Journal club 0 12-12-2012 08:19 AM
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR [Biophysics and Computational Biology]
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR Kato, H., van Ingen, H., Zhou, B.-R., Feng, H., Bustin, M., Kay, L. E., Bai, Y.... Date: 2011-07-26 Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome...
nmrlearner Journal club 0 07-26-2011 11:22 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:45 PM.


Map