BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-26-2015, 07:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Methyl groups as NMR probes for biomolecular interactions.

Methyl groups as NMR probes for biomolecular interactions.

Related Articles Methyl groups as NMR probes for biomolecular interactions.

Curr Opin Struct Biol. 2015 Sep 21;35:60-67

Authors: Wiesner S, Sprangers R

Abstract
Intermolecular interactions are indispensible for biological function. Here we discuss how novel NMR techniques can provide unique insights into the assembly, dynamics and regulation of biomolecular complexes. We focus on applications that exploit the methyl TROSY effect and show that methodological advances and biological insights go hand in hand. We envision that future methyl TROSY applications will continue to provide unique information regarding intermolecular interactions, even for very large eukaryotic protein complexes that are often highly asymmetric.


PMID: 26407236 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Glassy dynamics of protein methyl groups revealed by deuteron NMR.
Glassy dynamics of protein methyl groups revealed by deuteron NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Glassy dynamics of protein methyl groups revealed by deuteron NMR. J Phys Chem B. 2013 Jan 31;117(4):1051-61 Authors: Vugmeyster L, Ostrovsky D, Penland K, Hoatson GL, Vold RL Abstract We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K...
nmrlearner Journal club 0 02-03-2013 10:22 AM
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR Abstract The development of methyl-TROSY approaches and specific 13Câ??1H labeling of Ile, Leu and Val methyl groups in highly deuterated proteins has made it possible to study high molecular weight proteins, either alone or in complexes, using solution nuclear magnetic resonance (NMR) spectroscopy. Here we present 2-dimensional (2D) and 3-dimensional (3D) NMR experiments designed to achieve complete separation of the methyl resonances of Val and Leu, labeled using the same precursor, α-ketoisovalerate...
nmrlearner Journal club 0 05-01-2012 07:06 AM
Methyl groups as probes of supra-molecular structure, dynamics and function
Methyl groups as probes of supra-molecular structure, dynamics and function Abstract The development of new protein labeling strategies, along with optimized experiments that exploit the label, have significantly impacted on the types of biochemical problems that can now be addressed by solution NMR spectroscopy. Here we describe how methyl labeling of key residues in a highly deuterated protein background has facilitated studies of the structure, dynamics and interactions of supra-molecular particles. The methyl-labeling approach is briefly reviewed, followed by a summary of...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja1083656 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner Journal club 0 12-08-2010 10:04 AM
[NMR paper] Methyl groups as probes for proteins and complexes in in-cell NMR experiments.
Methyl groups as probes for proteins and complexes in in-cell NMR experiments. Related Articles Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J Am Chem Soc. 2004 Jun 9;126(22):7119-25 Authors: Serber Z, Straub W, Corsini L, Nomura AM, Shimba N, Craik CS, Ortiz de Montellano P, Dötsch V Studying protein components of large intracellular complexes by in-cell NMR has so far been impossible because the backbone resonances are unobservable due to their slow tumbling rates. We describe a methodology that overcomes...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in
Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. Related Articles Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003 Aug 27;125(34):10420-8 Authors: Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE A comparison of HSQC and HMQC pulse schemes for recording (1)H(13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented....
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] NMR studies of the methionine methyl groups in calmodulin.
NMR studies of the methionine methyl groups in calmodulin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of the methionine methyl groups in calmodulin. FEBS Lett. 1995 Jun 12;366(2-3):104-8 Authors: Siivari K, Zhang M, Palmer AG, Vogel HJ Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein that can regulate a wide variety of cellular events. The protein contains 9 Met out of a total of 148 amino acid residues. The binding of Ca2+ to CaM induces...
nmrlearner Journal club 0 08-22-2010 03:41 AM
13CHD2 Methyl Group Probes of Millisecond Time Scale Exchange in Proteins by 1H Relax
http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/2010/jacsat.2010.132.issue-32/ja104578n/production/images/medium/ja-2010-04578n_0005.gif <!-- abstract content --><sup>13</sup>CHD<sub>2</sub> Methyl Group Probes of Millisecond Time Scale Exchange in Proteins by <sup>1</sup>H Relaxation Dispersion: An Application to Proteasome Gating Residue Dynamics Andrew J. Baldwin, Tomasz L. Religa, D. Flemming Hansen, Guillaume Bouvignies and Lewis E. Kay* Departments of Molecular Genetics, Biochemistry and Chemistry,...
nmrlearner Journal club 0 08-14-2010 05:56 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:49 AM.


Map