BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-14-2016, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

Anal Bioanal Chem. 2016 Jan 12;

Authors: Beecher CN, Manighalam MS, Nwachuku AF, Larive CK

Abstract
Heparin and heparan sulfate (HS) are important in mediating a variety of biological processes through binding to myriad different proteins. Specific structural elements along the polysaccharide chains are essential for high affinity protein binding, such as the 3-O-sulfated N-sulfoglucosamine (GlcNS3S) residue, a relatively rare modification essential for heparin's anticoagulant activity. The isolation of 3-O-sulfated oligosaccharides from complex mixtures is challenging because of their low abundance. Although methods such as affinity chromatography are useful in isolating oligosaccharides that bind specific proteins with high affinity, other important 3-O-sulfated oligosaccharides may easily be overlooked. Screening preparative-scale size-exclusion chromatography (SEC) fractions of heparin or HS digests using [(1)H,(15)N] HSQC NMR allows the identification of fractions containing 3-O-sulfated oligosaccharides through the unique (1)H and (15)N chemical shifts of the GlcNS3S residue. Those SEC fractions containing 3-O-sulfated oligosaccharides can then be isolated using strong anion-exchange (SAX)-HPLC. Compared with the results obtained by pooling the fractions comprising a given SEC peak, SAX-HPLC analysis of individual SEC fractions produces a less complicated chromatogram in which the 3-O-sulfated oligosaccharides are enriched relative to more abundant components. The utility of this approach is demonstrated for tetrasaccharide SEC fractions of the low molecular weight heparin drug enoxaparin facilitating the isolation and characterization of an unsaturated 3-O-sulfated tetrasaccharide containing a portion of the antithrombin-III binding sequence. Graphical Abstract [(1)H, (15)N] HSQC NMR spectrum of a mixture of two tetrasaccharides, one of which contains the relatively rare 3-O-sulfated N-sulfoglucosamine residue.


PMID: 26758598 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Aggregation of a Tetrasaccharide Acceptor Observed by NMR: Synthesis of Pentasaccharide Fragments of the LeaLex Tumor-Associated Hexasaccharide Antigen.
Aggregation of a Tetrasaccharide Acceptor Observed by NMR: Synthesis of Pentasaccharide Fragments of the LeaLex Tumor-Associated Hexasaccharide Antigen. Aggregation of a Tetrasaccharide Acceptor Observed by NMR: Synthesis of Pentasaccharide Fragments of the LeaLex Tumor-Associated Hexasaccharide Antigen. J Org Chem. 2015 Apr 10; Authors: Kuir D, Guillemineau M, Auzanneau FI Abstract We report the synthesis of a tetrasaccharide and two pentasaccharide fragments of the LeaLex tumor associated carbohydrate antigen...
nmrlearner Journal club 0 04-11-2015 01:51 PM
[NMR paper] Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis.
Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Related Articles Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem. 2014 Nov 18; Authors: Rauthu SR, Shiao TC, André S, Miller MC, Madej E, Mayo KH, Gabius HJ, Roy R Abstract The emerging significance of...
nmrlearner Journal club 0 11-20-2014 08:40 PM
[NMR images] HSQC spectrum
http://www.protein-nmr.org.uk/pictures/spectra/hsqc_text.png 7/06/2014 7:13:57 PM GMT HSQC spectrum More...
nmrlearner NMR pictures 0 06-07-2014 07:12 PM
[NMR images] Figure 10. 13 C-NMR spectra of particulate fractions from north-side ...
http://pubs.usgs.gov/sir/2004/5217/images/fig10.gif 7/06/2014 7:13:57 PM GMT Figure 10. 13 C-NMR spectra of particulate fractions from north-side ... More...
nmrlearner NMR pictures 0 06-07-2014 07:12 PM
[Stan NMR blog] Blazys Expansions and Continued Fractions
Blazys Expansions and Continued Fractions On a bijection of a subset of irrationals onto one of integer sequences. Source: Stan blog library
nmrlearner News from NMR blogs 0 01-06-2014 08:50 PM
1H-15N HSQC, edited by a 1H inversion recovery and observed in the antiphase component (IR-HSQC-AP)
Could someone explain the experimental theory/basis behind 1H-15N inversion recovery filtered HSQC experiment observed in antiphase (IR-HSQC-AP)? I am still learning basic NMR theory, but would like to know about this particular experiment, which was used to detect paramagnetically broadened backbone resonances. Thanks. Abstract Biogenesis of iron–sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron–sulfur protein assembly machinery, two human key proteins—NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and...
talderson NMR Questions and Answers 0 09-23-2013 06:01 AM
[NMR paper] Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study.
Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study. Lipids. 2013 Feb;48(2):155-65 Authors: Kraja AT, Borecki IB, Tsai MY, Ordovas JM, Hopkins PN, Lai CQ, Frazier-Wood AC, Straka RJ, Hixson JE, Province MA, Arnett DK Abstract Sixteen nuclear magnetic resonance (NMR) spectroscopy...
nmrlearner Journal club 0 07-05-2013 09:52 PM
[NMR paper] Detergent-resistant membrane fractions contribute to the total 1H NMR-visible lipid s
Detergent-resistant membrane fractions contribute to the total 1H NMR-visible lipid signal in cells. Related Articles Detergent-resistant membrane fractions contribute to the total 1H NMR-visible lipid signal in cells. Eur J Biochem. 2003 May;270(9):2091-100 Authors: Wright LC, Djordjevic JT, Schibeci SD, Himmelreich U, Muljadi N, Williamson P, Lynch GW Leukocytes and other cells show an enhanced intensity of mobile lipid in their 1H NMR spectra under a variety of conditions. Such conditions include stimulation, which has recently been shown...
nmrlearner Journal club 0 11-24-2010 09:01 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:50 AM.


Map