BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The location of the polyphosphate-binding sites on cytochrome c measured by NMR param

The location of the polyphosphate-binding sites on cytochrome c measured by NMR paramagnetic difference spectroscopy.

Related Articles The location of the polyphosphate-binding sites on cytochrome c measured by NMR paramagnetic difference spectroscopy.

Eur J Biochem. 1991 Aug 1;199(3):569-74

Authors: Concar DW, Whitford D, Williams RJ

Analyses of unimolecular electron self-exchange reactions provide a comparatively simple and direct approach to understanding biological electron transfer. Such studies are currently limited by a lack of well characterised aggregating systems. In the presence of sodium hexametaphosphate, cytochrome c forms stable protein aggregates as a result of binding hexametaphosphate at a single site on its surface (preceding paper in this issue of the journal). Here we report the location of the principal polyphosphate binding site on the surface of cytochrome c for both hexametaphosphate and a second polyphosphate, tripolyphosphate determined using 1H-NMR spectroscopy in conjunction with the relaxation probe potassium hexacyanochromium(III). Addition of either hexametaphosphate or tripolyphosphate to ferricytochrome c in the presence of the relaxation probe causes a decrease in intensity of several resonances in the paramagnetic difference spectrum, including Phe82 ortho/meta, Ile85 delta methyl and Ile9 gamma methyl. Together these effects put the site of polyphosphate binding close to lysines 13, 86, and 87. Additionally the effect of sodium tripolyphosphate and sodium trimetaphosphate on cytochrome c aggregation is described. The potential role of this site in anion-induced cytochrome c aggregation is discussed.

PMID: 1651238 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and si
Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Related Articles Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Biochemistry. 2003 Nov 25;42(46):13410-21 Authors: Wilder PT, Baldisseri DM, Udan R, Vallely KM, Weber DJ In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Protein hydration and location of water molecules in oxidized horse heart cytochrome
Protein hydration and location of water molecules in oxidized horse heart cytochrome c by (1)H NMR. Related Articles Protein hydration and location of water molecules in oxidized horse heart cytochrome c by (1)H NMR. J Magn Reson. 2000 Nov;147(1):1-8 Authors: Bertini I, Huber JG, Luchinat C, Piccioli M The hydration properties of the oxidized form of horse heart cytochrome c have been studied by (1)H NMR spectroscopy. Two-dimensional, homonuclear ePHOGSY-NOESY experiments are used to map water-protein interactions. The detected NOEs reveal...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] 19F NMR evidence for interactions between the c-AMP binding sites on the c-AMP recept
19F NMR evidence for interactions between the c-AMP binding sites on the c-AMP receptor protein from E. coli. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F NMR evidence for interactions between the c-AMP binding sites on the c-AMP receptor protein from E. coli. FEBS Lett. 1991 May 20;283(1):127-30 Authors: Hinds MG, King RW, Feeney J The 19F NMR spectra of 3-fluorotyrosine containing c-AMP receptor protein (CRP) from E. coli have been recorded in the presence of...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] The location of the polyphosphate-binding sites on cytochrome c measured by NMR param
The location of the polyphosphate-binding sites on cytochrome c measured by NMR paramagnetic difference spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The location of the polyphosphate-binding sites on cytochrome c measured by NMR paramagnetic difference spectroscopy. Eur J Biochem. 1991 Aug 1;199(3):569-74 Authors: Concar DW, Whitford D, Williams RJ Analyses of unimolecular electron self-exchange reactions provide...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 19F NMR study of the myosin and tropomyosin binding sites on actin.
19F NMR study of the myosin and tropomyosin binding sites on actin. Related Articles 19F NMR study of the myosin and tropomyosin binding sites on actin. Biochemistry. 1990 Feb 6;29(5):1348-54 Authors: Barden JA, Phillips L Actin was labeled with pentafluorophenyl isothiocyanate at Lys-61. The label was sufficiently small not to affect the rate or extent of actin polymerization unlike the much larger fluorescein 5-isothiocyanate which completely inhibits actin polymerization . Furthermore, the label resonances in the 376.3-MHz 19F NMR spectrum...
nmrlearner Journal club 0 08-21-2010 10:48 PM
[NMR paper] Location of a cation-binding site in the loop between helices F and G of bacteriorhod
Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523-31 Authors: Tuzi S, Yamaguchi S, Tanio M, Konishi H, Inoue S, Naito A,...
nmrlearner Journal club 0 08-21-2010 04:03 PM
[NMR paper] Identification of the ribosome binding sites of translation initiation factor IF3 by
Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA. 1999 Jan;5(1):82-92 Authors: Sette M, Spurio R, van Tilborg P, Gualerzi CO, Boelens R Titrations of Escherichia coli translation initiation...
nmrlearner Journal club 0 08-21-2010 04:03 PM
Prediction of binding sites from protein structure
Surfnet http://www.biochem.ucl.ac.uk/~roman/surfnet/surfnet.html
nmrlearner A test forum 0 09-19-2005 05:54 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:37 PM.


Map