BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative

Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

Related Articles Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

J Lipid Res. 2002 Jan;43(1):132-40

Authors: Corcelli A, Lattanzio VM, Mascolo G, Papadia P, Fanizzi F

The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycolipid sulfate, 1 of phosphatidylglycerol, 1 of archaeal glycocardiolipin (GlyC), 2 of squalene plus minor amounts of phosphatidylglycerosulfate (PGS) and bisphosphatidylglycerol (archaeal cardiolipin) (BPG) and a negligible amount of vitamin MK8. The novel data of the present study are necessary to identify the lipids in the electron density map, and to shed light on the structural relationships of the lipid and protein components of the PM.

PMID: 11792732 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Up Close with Membrane Lipid-Protein Complexes - Science Careers Blog (subscription)
Up Close with Membrane Lipid-Protein Complexes - Science Careers Blog (subscription) <img alt="" height="1" width="1" /> Up Close with Membrane Lipid-Protein Complexes Science Careers Blog (subscription) (2) report mass spectrometry of intact integral membrane protein complexes solubilized from bilayers. The results show that specific structural lipids remain bound in the gas phase and can be counted. Despite some technical hurdles, integral membrane ... Read here
nmrlearner Online News 0 10-21-2011 09:52 AM
Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures.
Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Anal Chem. 2011 Apr 15;83(8):3112-9 Authors: Giraudeau P, Massou S, Robin Y, Cahoreau E, Portais JC, Akoka S Two-dimensional nuclear magnetic resonance (2D NMR) is a promising tool for studying metabolic fluxes by measuring (13)C-enrichments in complex mixtures of (13)C-labeled...
nmrlearner Journal club 0 08-04-2011 11:41 AM
A solution NMR view of protein dynamics in the biological membrane.
A solution NMR view of protein dynamics in the biological membrane. A solution NMR view of protein dynamics in the biological membrane. Curr Opin Struct Biol. 2011 Jul 30; Authors: Chill JH, Naider F Structure determination of membrane-associated proteins (MPs) represents a frontier of structural biology that is characterized by unique challenges in sample preparation and data acquisition. No less important is our ability to study the dynamics of MPs, since MP flexibility and characteristic motions often make sizeable contributions to their...
nmrlearner Journal club 0 08-03-2011 12:00 PM
[NMR paper] Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy wit
Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Related Articles Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Chembiochem. 2004 Apr 2;5(4):467-73 Authors: Hilty C, Wider G, Fernández C, Wüthrich K For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Lipid-protein interactions in DHPC micelles containing the integral membrane protein
Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Related Articles Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13533-7 Authors: Fernández C, Hilty C, Wider G, Wüthrich K Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid
Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Related Articles Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Biochemistry. 1990 Apr 24;29(16):3828-34 Authors: Van Gorkom LC, Horváth LI, Hemminga MA, Sternberg B, Watts A The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of...
nmrlearner Journal club 0 08-21-2010 10:48 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:23 AM.


Map