BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-14-2015, 03:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,922
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default "Invisible" Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations.

"Invisible" Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations.

Related Articles "Invisible" Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations.

Chemistry. 2015 Feb 12;

Authors: Fizil Á, Gáspári Z, Barna T, Marx F, Batta G

Abstract
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.


PMID: 25676351 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 11-12-2012 01:53 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-12-2012 09:58 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 08-24-2012 08:01 PM
[NMR paper] Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC
Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc. 2002 Oct 16;124(41):12352-60 Authors: Skrynnikov NR, Dahlquist FW, Kay LE Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Related Articles NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631-41 Authors: Zhang J, Peng X, Jonas A, Jonas J The reversible cold, heat, and pressure unfolding of RNase A and RNase A--inhibitor complex were studied by 1D and 2D 1H NMR spectroscopy. The reversible pressure denaturation experiments in the pressure range from 1 bar to 5 kbar were carried out at pH 2.0 and 10 degrees C. The cold denaturation was...
nmrlearner Journal club 0 08-22-2010 03:50 AM
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York A postdoctoral position to study the solution dynamics and structure of protein kinases is available on a NIH funded project (REF#: HS-R-6453-10-08-S). Our group is interested in how static and dynamic changes of protein structure affect the activity of protein kinases. We combine X-ray crystallography, NMR and ligand binding kinetics with collaborative molecular dynamic studies (See e.g. ref 1 and 2). Our research group is located at Stony Brook University in a highly interactive environment with the New York...
nmrlearner Job marketplace 0 08-21-2010 05:17 AM
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York A postdoctoral position to study the solution dynamics and structure of protein kinases is available on a NIH funded project (REF#: HS-R-6453-10-08-S). Our group is interested in how static and dynamic changes of protein structure affect the activity of protein kinases. We combine X-ray crystallography, NMR and ligand binding kinetics with collaborative molecular dynamic studies (See e.g. ref 1 and 2). Our research group is located at Stony Brook University in a highly interactive environment with the New York...
nmrlearner Job marketplace 0 08-21-2010 05:14 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:15 PM.


Map