BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Interaction of a type II myosin with biological membranes studied by 2H solid state N

Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.

Related Articles Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.

Biochemistry. 1998 Apr 21;37(16):5582-8

Authors: Arêas JA, Gröbner G, Glaubitz C, Watts A

Deuterium nuclear magnetic resonance spectroscopy (2H NMR) has been employed to investigate the interaction of lung type II myosin protein with neutral bilayers containing dimyristoylphosphatidylcholine (DMPC) as the only constituent and mixed bilayers containing the negatively charged lipid dimyristoylphosphatidylglycerol (DMPG). DMPC was deuterated at its headgroup by substituting the four protons at the alpha- and beta-positions (DMPC-d4) and the nine protons at the gamma-position (DMPC-d9). DMPG was perdeuterated at its headgroup (DMPG-d5). No changes were observed in the quadrupole splittings or spin-lattice relaxation times for the deuterated DMPC headgroup segments when increasing amounts of myosin were added to liposomes, made exclusively of DMPC-d9 or of DMPC-d4. However, upon the insertion of the negatively charged lipid DMPG at 1:1 molar ratio into the DMPC bilayers, myosin was found to interact electrostatically with the liposomes, thereby affecting significantly both the quadrupole splittings and spin-lattice relaxation rates of the alpha-, beta-, and gamma-deuterons in labeled DMPC. Monitoring DMPG-d5 in mixed DMPC/DMPG bilayers revealed a direct electrostatic interaction of DMPG with the protein, where positively charged lysine residues located at the tail domain of myosin provide the necessary sites for the interaction to occur. When ATP and Mg2+ were complexed to the head domain of myosin, a reduced interaction with the negatively charged bilayers was observed. The results clearly indicate that a type II myosin can interact with membranes without the need for a specific hydrophobic domain or an anchor in the protein molecule, provided that negatively charged lipids are present in the bilayer.

PMID: 9548943 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR.
The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. Biochim Biophys Acta. 2011 Sep;1808(9):2095-101 Authors: Tian X, Pavlopoulos S, Yang DP, Makriyannis A Abstract Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using (2)H solid state NMR, and the results are compared with our...
nmrlearner Journal club 0 09-13-2011 08:27 PM
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR.
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR. In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR. J Am Chem Soc. 2011 Jul 21; Authors: Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F The feasibility of using solid state MAS NMR for in situ structural characterization of the LR11 (sorLA) transmembrane domain in native Escherichia coli (E. coli) membranes is presented. LR11 interacts with...
nmrlearner Journal club 0 07-23-2011 08:54 AM
Solid-State (19)F-NMR of Peptides in Native Membranes.
Solid-State (19)F-NMR of Peptides in Native Membranes. Solid-State (19)F-NMR of Peptides in Native Membranes. Top Curr Chem. 2011 May 20; Authors: Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR,...
nmrlearner Journal club 0 05-21-2011 07:51 PM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Eur Biophys J. 2011 Jan 28; Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes st
Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR. Related Articles Interaction of the fusogenic peptide B18 in its amyloid-state with lipid membranes studied by solid state NMR. Chem Phys Lipids. 2004 Nov;132(1):65-77 Authors: Grage SL, Afonin S, Grüne M, Ulrich AS The interaction of the fusogenic polypeptide segment "B18" from the fertilization protein binding with lipid membranes was investigated by solid state 2H and 31P NMR, and by differential scanning calorimetry. B18 is known...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd
Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd NMR. Related Articles Exploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd NMR. Biochemistry. 2000 Jun 13;39(23):6751-5 Authors: Matysik J, Alia A, Nachtegaal G, van Gorkom HJ, Hoff AJ, de Groot HJ Calcium (Ca(2+)) is an essential cofactor for photosynthetic oxygen evolution. Although the involvement of Ca(2+) at the oxidizing side of photosystem II of plants has been known for a long time, its ligand interactions and mode of...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lantha
Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Related Articles Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies. Biochem Cell Biol. 1998;76(2-3):443-51 Authors: Prosser RS, Volkov VB, Shiyanovskaya IV The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Post-Doc position in biological solid-State NMR
Post-Doc position in biological solid-State NMR The biological solid-state NMR group of Anja Böckmann at the IBCP in Lyon (www.ibcp.fr) has an opening for a post-doc. The project is part of the Bio-NMR European joint research activity on protein structure determination by solid-state NMR, and is a collaboration which is pursued with the groups of Beat H. Meier (ETH Zurich) and Peter Güntert (University of Frankfurt). It involves production and purification of model proteins, starte-of-the-art spectroscopy, spectral analysis and structure determination. It is the aim of the project to...
nmrlearner Job marketplace 0 11-05-2010 12:09 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:00 PM.


Map