BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-04-2021, 10:34 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling

An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling

Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful tools for structure determination of large, sparsely protonated proteins. However traditional applications face several challenges, including a need for large datasets to offset the sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the spin-label, and noisy experimental data. Here we propose an integrative approach to structure determination combining sparse paramagnetic NMR...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] PRE-driven Protein NMR Structures: an Alternative Approach in Highly Paramagnetic Systems.
PRE-driven Protein NMR Structures: an Alternative Approach in Highly Paramagnetic Systems. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7388-69-wiley-full-text.png Related Articles PRE-driven Protein NMR Structures: an Alternative Approach in Highly Paramagnetic Systems. FEBS J. 2020 Oct 30;: Authors: Trindade IB, Invernici M, Cantini F, Louro RO, Piccioli M Abstract Metalloproteins play key roles across biology, and knowledge of their structure is essential to understand their...
nmrlearner Journal club 0 11-04-2020 05:04 PM
New technique to determine protein structures may solve biomedical puzzles: 'Experimental evolution' analyses can determine the interactions that proteins use to fold into functional three-dimensional shapes - Science Daily
New technique to determine protein structures may solve biomedical puzzles: 'Experimental evolution' analyses can determine the interactions that proteins use to fold into functional three-dimensional shapes - Science Daily New technique to determine protein structures may solve biomedical puzzles: 'Experimental evolution' analyses can determine the interactions that proteins use to fold into functional three-dimensional shapes Science Daily Read here
nmrlearner Online News 0 02-29-2020 09:52 PM
[NMR paper] High accuracy protein structures from minimal sparse paramagnetic solid-state NMR restraints.
High accuracy protein structures from minimal sparse paramagnetic solid-state NMR restraints. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles High accuracy protein structures from minimal sparse paramagnetic solid-state NMR restraints. Angew Chem Int Ed Engl. 2019 Mar 26;: Authors: Perez A, Gaalswyk K, Jaroniec CP, MacCallum JL Abstract There is a pressing need for new computational tools to integrate data from diverse...
nmrlearner Journal club 0 03-28-2019 01:56 AM
[NMR paper] High accuracy protein structures from minimal sparse paramagnetic solid-state NMR restraints
High accuracy protein structures from minimal sparse paramagnetic solid-state NMR restraints Angewandte Chemie International Edition, Volume 0, Issue ja, -Not available-. More...
nmrlearner Journal club 0 03-28-2019 01:56 AM
[NMR paper] 3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data.
3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data. 3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data. Methods Mol Biol. 2017;1526:3-21 Authors: Pilla KB, Otting G, Huber T Abstract Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR)...
nmrlearner Journal club 0 11-30-2016 11:16 AM
[NMR paper] Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data.
Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data. Related Articles Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data. PLoS One. 2015;10(5):e0127053 Authors: Pilla KB, Leman JK, Otting G, Huber T Abstract Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying...
nmrlearner Journal club 0 05-21-2015 04:28 PM
Protein structure modeling using sparse NMR data [Biophysics and Computational Biology]
Protein structure modeling using sparse NMR data Thompson, J. M., Sgourakis, N. G., Liu, G., Rossi, P., Tang, Y., Mills, J. L., Szyperski, T., Montelione, G. T., Baker, D.... Date: 2012-06-19 While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that...
nmrlearner Journal club 0 06-20-2012 02:28 AM
[Question from NMRWiki Q&A forum] How to determine physical orientation of X and Y shims?
How to determine physical orientation of X and Y shims? Hello, I need to help solids lab at our UCI site - they have a custom probe and need to orient it properly in order to ease the shimming procedure. My question is - how to determine orientation of X and Y shims? We have 800 MHz 63 mm Oxford magnet (+ Varian UnityInova console)
nmrlearner News from other NMR forums 0 09-14-2010 03:44 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:01 AM.


Map