BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-15-2017, 03:26 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination

Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination

Abstract

We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithmsâ??RDC-SOS and RDCâ??NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramérâ??Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are corrupted by Gaussian noise of realistic variance, both SOS based algorithms attain the CRB. We successfully apply our method in a divide-and-conquer fashion to determine the structure of ubiquitin from experimental NOE and RDC measurements obtained in two alignment media, achieving more accurate and faster reconstructions compared to the current state of the art.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Determination of Protein Secondary Structure fromInfrared Spectra Using Partial Least-Squares Regression
Determination of Protein Secondary Structure fromInfrared Spectra Using Partial Least-Squares Regression http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00403/20160629/images/medium/bi-2016-00403g_0011.gif Biochemistry DOI: 10.1021/acs.biochem.6b00403 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/lMJ9jbbVfhs More...
nmrlearner Journal club 0 06-30-2016 02:26 AM
[NMR paper] Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement.
Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement. Related Articles Structure determination of uniformly (13)C, (15)N labeled protein using qualitative distance restraints from MAS solid-state (13)C-NMR observed paramagnetic relaxation enhancement. J Biomol NMR. 2016 Jan 4; Authors: Tamaki H, Egawa A, Kido K, Kameda T, Kamiya M, Kikukawa T, Aizawa T, Fujiwara T, Demura M Abstract Magic angle spinning...
nmrlearner Journal club 0 01-07-2016 08:36 AM
Structure determination of uniformly 13 C, 15 N labeled protein using qualitative distance restraints from MAS solid-state 13 C-NMR observed paramagnetic relaxation enhancement
Structure determination of uniformly 13 C, 15 N labeled protein using qualitative distance restraints from MAS solid-state 13 C-NMR observed paramagnetic relaxation enhancement Abstract Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from...
nmrlearner Journal club 0 01-04-2016 07:49 PM
[NMR paper] Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. J Biomol NMR. 2014 Nov 27; Authors: Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T, Kojima C Abstract NMR structure determination of soluble proteins...
nmrlearner Journal club 0 11-28-2014 11:37 AM
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints Abstract NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based...
nmrlearner Journal club 0 11-26-2014 10:50 PM
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR 6 June 2012 Publication year: 2012 Source:Structure, Volume 20, Issue 6</br> </br> Nuclear magnetic resonance (NMR) structure calculations of the ?-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5*Å in the absence of other long-range conformational restraints. Our...
nmrlearner Journal club 0 02-03-2013 10:13 AM
[NMR paper] NMR structure of Mistic, a membrane-integrating protein for membrane protein expressi
NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Related Articles NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science. 2005 Feb 25;307(5713):1317-21 Authors: Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S Although structure determination of soluble proteins has become routine, our understanding of membrane proteins has been limited by experimental bottlenecks in obtaining both sufficient yields of protein and ordered crystals. Mistic is an...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] SESAME: a least-squares approach to the evaluation of protein structures computed fro
SESAME: a least-squares approach to the evaluation of protein structures computed from NMR data. Related Articles SESAME: a least-squares approach to the evaluation of protein structures computed from NMR data. J Biomol NMR. 1993 May;3(3):355-60 Authors: Yang JX, Havel TF A method is proposed for defining a probability distribution on an ensemble of protein conformations from a 2D NOE spectrum, while at the same time back-calculating the experimental spectrum from the ensemble. This enables one to assess the relative quality and significance...
nmrlearner Journal club 0 08-21-2010 11:53 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:41 AM.


Map