BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-18-2014, 01:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Information-driven modeling of large macromolecular assemblies using NMR data.

Information-driven modeling of large macromolecular assemblies using NMR data.

Related Articles Information-driven modeling of large macromolecular assemblies using NMR data.

J Magn Reson. 2014 Apr;241:103-14

Authors: van Ingen H, Bonvin AM

Abstract
Availability of high-resolution atomic structures is one of the prerequisites for a mechanistic understanding of biomolecular function. This atomic information can, however, be difficult to acquire for interesting systems such as high molecular weight and multi-subunit complexes. For these, low-resolution and/or sparse data from a variety of sources including NMR are often available to define the interaction between the subunits. To make best use of all the available information and shed light on these challenging systems, integrative computational tools are required that can judiciously combine and accurately translate the sparse experimental data into structural information. In this Perspective we discuss NMR techniques and data sources available for the modeling of large and multi-subunit complexes. Recent developments are illustrated by particularly challenging application examples taken from the literature. Within this context, we also position our data-driven docking approach, HADDOCK, which can integrate a variety of information sources to drive the modeling of biomolecular complexes. It is the synergy between experimentation and computational modeling that will provides us with detailed views on the machinery of life and lead to a mechanistic understanding of biomolecular function.


PMID: 24656083 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes
Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes Publication date: Available online 15 November 2014 Source:Journal of Magnetic Resonance</br> Author(s): Pascal Fricke , Veniamin Chevelkov , Chaowei Shi , Adam Lange</br> Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized proteins. Because of their high degree of local order, solid-state NMR...
nmrlearner Journal club 0 11-16-2014 02:13 AM
[NMR paper] Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information.
Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information. Related Articles Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information. Structure. 2013 May 14; Authors: Menon V, Vallat BK, Dybas JM, Fiser A Abstract A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs)...
nmrlearner Journal club 0 05-21-2013 02:34 PM
Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information
Modeling Proteins Using a Super-Secondary Structure Library and NMR Chemical Shift Information Publication date: Available online 16 May 2013 Source:Structure</br> Author(s): Vilas Menon , Brinda*K. Vallat , Joseph*M. Dybas , Andras Fiser</br> A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build...
nmrlearner Journal club 0 05-16-2013 06:05 PM
Translational Diffusion of Macromolecular Assemblies Measured Using Transverse-Relaxation-Optimized Pulsed Field Gradient NMR
Translational Diffusion of Macromolecular Assemblies Measured Using Transverse-Relaxation-Optimized Pulsed Field Gradient NMR Reto Horst, Arthur L. Horwich and Kurt Wu?thrich http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206531c/aop/images/medium/ja-2011-06531c_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja206531c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NWK45WCbths
nmrlearner Journal club 0 09-26-2011 06:54 PM
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR. Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR. J Am Chem Soc. 2011 Sep 16; Authors: Horst R, Horwich AL, Wüthrich K Abstract ABSTRACT In structural biology, pulsed field gradient (PFG) NMR for characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution...
nmrlearner Journal club 0 09-17-2011 08:21 PM
A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies
A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies Abstract Obtaining sequence-specific assignments remains a major bottleneck in solution NMR investigations of supramolecular structure, dynamics and interactions. Here we demonstrate that resonance assignment of methyl probes in high molecular weight protein assemblies can be efficiently achieved by combining fast NMR experiments, residue-type-specific isotope-labeling and automated site-directed mutagenesis. The utility of this general and straightforward strategy is demonstrated through...
nmrlearner Journal club 0 06-06-2011 12:53 AM
A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies.
A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR. 2011 May 29; Authors: Amero C, Asunción Durá M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J Obtaining sequence-specific assignments remains a major bottleneck in solution NMR investigations of supramolecular structure, dynamics and interactions. Here we demonstrate that resonance...
nmrlearner Journal club 0 06-01-2011 02:30 PM
[NMR paper] Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method
Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. Related Articles Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. J Am Chem Soc. 2003 Mar 5;125(9):2541-5 Authors: Ferrage F, Zoonens M, Warschawski DE, Popot JL, Bodenhausen G The translational diffusion coefficient of an integral membrane protein/surfactant complex has been measured using a novel pulsed field gradient NMR method. In this new approach, the information about the localization of the molecules is...
nmrlearner Journal club 0 11-24-2010 09:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:41 AM.


Map