BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-02-2019, 06:55 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improving the sensitivity of FT-NMR spectroscopy by apodization weighted sampling

Improving the sensitivity of FT-NMR spectroscopy by apodization weighted sampling

Abstract

Apodization weighted acquisition is a simple approach to enhance the sensitivity of multidimensional NMR spectra by scaling the number of scans during acquisition of the indirect dimension(s). The signal content of the resulting spectra is identical to conventionally sampled data, yet the spectra show improved signal-to-noise ratios. There are no special requirements for data acquisition and processing: the time-domain data can be transformed with the same schemes used for conventionally recorded spectra, including Fourier transformation. The method is of general use in multidimensional liquid and solid state NMR experiments if the number of recorded transients per sampling point is bigger than the minimum required phase cycle of the pulse sequence.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR Kubicki, D.J. and L. Emsley, Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization. Chimia (Aarau), 2017. 71(4): p. 190-194. https://www.ncbi.nlm.nih.gov/pubmed/28446334
nmrlearner News from NMR blogs 0 05-21-2018 06:16 PM
[NMR paper] Nonuniform Sampling in Multidimensional NMR for Improving Spectral Sensitivity.
Nonuniform Sampling in Multidimensional NMR for Improving Spectral Sensitivity. Nonuniform Sampling in Multidimensional NMR for Improving Spectral Sensitivity. Methods. 2018 Mar 06;: Authors: Zambrello MA, Schuyler AD, Maciejewski MW, Delaglio F, Bezsonova I, Hoch JC Abstract The development of multidimensional NMR spectroscopy enabled an explosion of structural and dynamical investigations on proteins and other biomacromolecules. Practical limitations on data sampling, based on the Jeener paradigm of parametric sampling of...
nmrlearner Journal club 0 03-10-2018 04:36 PM
Sensitivity of nonuniform sampling NMR
From The DNP-NMR Blog: Sensitivity of nonuniform sampling NMR This is not an article directly related to DNP, however, non-uniform sampling is another great technique to enhance sensitivity in a NMR experiment. The concept can easily combined with DNP to yield even higher sensitivity enhancement factors.
nmrlearner News from NMR blogs 0 07-17-2015 03:02 PM
[NMR paper] Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR.
Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. Related Articles Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. J Biomol NMR. 2014 Mar 29; Authors: Palmer MR, Wenrich BR, Stahlfeld P, Rovnyak D Abstract Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform...
nmrlearner Journal club 0 04-01-2014 02:47 PM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR June 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 219</br> </br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional manner by the...
nmrlearner Journal club 0 02-03-2013 10:13 AM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR Publication year: 2012 Source:Journal of Magnetic Resonance</br> Christopher A. Waudby, John Christodoulou</br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional...
nmrlearner Journal club 0 05-01-2012 08:03 PM
Grid computing for improving conformational sampling in NMR structure calculation.
Grid computing for improving conformational sampling in NMR structure calculation. Grid computing for improving conformational sampling in NMR structure calculation. Bioinformatics. 2011 May 5; Authors: Mareuil F, Blanchet C, Malliavin TE, Nilges M MOTIVATION: Methods for automatic NMR structure determination need to face a high level of ambiguity encountered in NMR spectra recorded by solid-state NMR and by solution NMR of partially unfolded proteins, leading to time-consuming calculations. The software package Ambiguous Restraints for Iterative...
nmrlearner Journal club 0 05-08-2011 04:35 AM
[NMR paper] Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.
Improving NMR sensitivity in room temperature and cooled probes with dipolar ions. Related Articles Improving NMR sensitivity in room temperature and cooled probes with dipolar ions. J Magn Reson. 2005 Apr;173(2):339-43 Authors: Lane AN, Arumugam S The response of inverse triple resonance cold and conventional probes to ionic strength has been compared under a variety of conditions relevant to protein NMR. Increasing the salt concentration degrades probe performance in terms of sensitivity, and the effect is more severe for cold probes and...
nmrlearner Journal club 0 11-25-2010 08:21 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:43 PM.


Map