BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-08-2011, 11:30 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improved technologies now routinely provide protein NMR structures useful for molecular replacement.

Improved technologies now routinely provide protein NMR structures useful for molecular replacement.

Improved technologies now routinely provide protein NMR structures useful for molecular replacement.

Structure. 2011 Jun 8;19(6):757-66

Authors: Mao B, Guan R, Montelione GT

Molecular replacement (MR) is widely used for addressing the phase problem in X-ray crystallography. Historically, crystallographers have had limited success using NMR structures as MR search models. Here, we report a comprehensive investigation of the utility of protein NMR ensembles as MR search models, using data for 25 pairs of X-ray and NMR structures solved and refined using modern NMR methods. Starting from NMR ensembles prepared by an improved protocol, FindCore, correct MR solutions were obtained for 22 targets. Based on these solutions, automatic model rebuilding could be done successfully. Rosetta refinement of NMR structures provided MR solutions for another two proteins. We also demonstrate that such properly prepared NMR ensembles and X-ray crystal structures have similar performance when used as MR search models for homologous structures, particularly for targets with sequence identity >40%.

PMID: 21645849 [PubMed - in process]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner Journal club 0 02-11-2012 10:31 AM
[NMR paper] NMR-detected hydrogen exchange and molecular dynamics simulations provide structural
NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126. Related Articles NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106-126. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14790-5 Authors: Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H PrP106-126, a peptide corresponding to residues 107-127 of the human prion protein, induces neuronal cell...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] A systematic case study on using NMR models for molecular replacement: p53 tetrameriz
A systematic case study on using NMR models for molecular replacement: p53 tetramerization domain revisited. Related Articles A systematic case study on using NMR models for molecular replacement: p53 tetramerization domain revisited. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1535-40 Authors: Chen YW, Clore GM Molecular replacement using search models derived from nuclear magnetic resonance (NMR) spectroscopy has often proved problematic. It has been known for some time that the overall differences in atomic positions (r.m.s.d.)...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Does NMR mean "not for molecular replacement"? Using NMR-based search models to solve
Does NMR mean "not for molecular replacement"? Using NMR-based search models to solve protein crystal structures. Related Articles Does NMR mean "not for molecular replacement"? Using NMR-based search models to solve protein crystal structures. Structure. 2000 Nov 15;8(11):R213-20 Authors: Chen YW, Dodson EJ, Kleywegt GJ
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution
TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Related Articles TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci. 2000 Oct;25(10):462-8 Authors: Riek R, Pervushin K, Wüthrich K TROSY and CRINEPT are new techniques for solution NMR studies of molecular and supramolecular structures. They allow the collection of high-resolution spectra of structures with molecular weights >100 kDa, significantly extending the range of macromolecular systems that can...
nmrlearner Journal club 0 11-19-2010 08:29 PM
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Stru
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Structural Explanation for Enthalpy-Entropy Compensation in SH2-Ligand Binding. Related Articles Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Structural Explanation for Enthalpy-Entropy Compensation in SH2-Ligand Binding. J Am Chem Soc. 2010 Aug 18;132(32):11058-70 Authors: Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB NMR spectroscopy and molecular dynamics (MD) simulations were used to probe the structure and dynamics...
nmrlearner Journal club 0 08-17-2010 03:36 AM
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Stru
Constraining Binding Hot Spots: NMR and Molecular Dynamics Simulations Provide a Structural Explanation for Enthalpy−Entropy Compensation in SH2−Ligand Binding Joshua M. Ward<sup>†</sup>, Nina M. Gorenstein<sup>†</sup>, Jianhua Tian<sup>‡</sup>, Stephen F. Martin<sup>‡</sup> and Carol Beth Post*<sup>†</sup> Department of Medicinal Chemistry, Markey Center for Structural Biology, and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, and Department of Chemistry and Biochemistry and The Institute of Cellular and Molecular Biology, The University of Texas,...
nmrlearner Journal club 0 08-14-2010 05:56 AM
Detection of unrealistic molecular environments in protein structures based on expect
Abstract Understanding the relationship between protein structure and biological function is a central theme in structural biology. Advances are severely hampered by errors in experimentally determined protein structures. Detection and correction of such errors is therefore of utmost importance. Electron densities in molecular structures obey certain rules which depend on the molecular environment. Here we present and discuss a new approach that relates electron densities computed from a structural model to densities expected from prior observations on identical or closely related molecular...
nmrlearner Journal club 0 08-14-2010 04:19 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:43 AM.


Map