BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) che

Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate.

Related Articles Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate.

J Am Chem Soc. 2002 Jan 23;124(3):372-3

Authors: Pintacuda G, Otting G

Gd-diethylenetriamine pentaacetic acid-bismethylamide, Gd(DTPA-BMA), is shown to be a reagent suitable for the identification of protein surfaces. Compared to the conventionally used spin-label TEMPOL, Gd(DTPA-BMA) is a stronger relaxation agent, requiring lesser concentrations to achieve the same paramagnetic relaxation enhancement of solvent-exposed protein protons. It is also less hydrophobic and therefore less prone to specific binding to proteins. Relaxation enhancements predicted by a second-sphere interaction model correlated with experimental data recorded with ubiquitin, while the correlation with corresponding data recorded with TEMPOL was poor.

PMID: 11792196 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure of Peptides on Metal Oxide Surfaces Probed by NMR
Structure of Peptides on Metal Oxide Surfaces Probed by NMR Peter A. Mirau, Rajesh R. Naik and Patricia Gehring http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja205454t/aop/images/medium/ja-2011-05454t_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja205454t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/twbT3VIr8Xo
nmrlearner Journal club 0 10-22-2011 10:16 AM
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. J Struct Biol. 2011 Apr 9; Authors: Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki EI, Shimada I, Takahashi H Protein-protein interactions are necessary for various cellular...
nmrlearner Journal club 0 04-20-2011 07:15 PM
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions.
Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions. Angew Chem Int Ed Engl. 2011 Mar 18; Authors: Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M
nmrlearner Journal club 0 03-23-2011 05:41 PM
[NMR paper] Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Related Articles Thermodynamic interpretation of protein dynamics from NMR relaxation measurements. Protein Pept Lett. 2005 Apr;12(3):235-40 Authors: Spyracopoulos L Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Protein dynamics measurements by TROSY-based NMR experiments.
Protein dynamics measurements by TROSY-based NMR experiments. Related Articles Protein dynamics measurements by TROSY-based NMR experiments. J Magn Reson. 2000 Apr;143(2):423-6 Authors: Zhu G, Xia Y, Nicholson LK, Sze KH The described TROSY-based experiments for investigating backbone dynamics of proteins make it possible to elucidate internal motions in large proteins via measurements of T(1), T(2), and NOE of backbone (15)N nuclei. In our proposed sequences, the INEPT sequence is eliminated and the PEP sequence is replaced by the ST2-PT...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized
Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized xenon-129 NMR. Related Articles Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized xenon-129 NMR. J Am Chem Soc. 1999 Oct 13;121(40):9370-7 Authors: Bowers CR, Storhaug V, Webster CE, Bharatam J, Cottone A, Gianna R, Betsey K, Gaffney BJ This paper presents an exploratory study of the binding interactions of xenon with the surface of several different proteins in the solution and solid states using both conventional and...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] NMR identification of protein surfaces using paramagnetic probes.
NMR identification of protein surfaces using paramagnetic probes. Related Articles NMR identification of protein surfaces using paramagnetic probes. Biochemistry. 1990 Oct 30;29(43):10041-8 Authors: Petros AM, Mueller L, Kopple KD Paramagnetic agents produce line broadening and thus cancellation of anti phase cross-peak components in two-dimensional correlated nuclear magnetic resonance spectra. The specificity of this effect was examined to determine its utility for identifying surface residues of proteins. Ubiquitin and hen egg white...
nmrlearner Journal club 0 08-21-2010 11:04 PM
[NMR paper] NMR studies of protein surfaces. The interaction of lysozyme with tri-N-acetylglucosa
NMR studies of protein surfaces. The interaction of lysozyme with tri-N-acetylglucosamine. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of protein surfaces. The interaction of lysozyme with tri-N-acetylglucosamine. Biochem Pharmacol. 1990 Jul 1;40(1):65-8 Authors: Petros AM, Kopple KD
nmrlearner Journal club 0 08-21-2010 10:48 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:10 AM.


Map