BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A high-resolution 1H NMR approach for structure determination of membrane peptides an

A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside.

Related Articles A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside.

J Biomol NMR. 1995 Jun;5(4):345-52

Authors: Seigneuret M, Lévy D

Application of 1H 2D NMR methods to solubilized membrane proteins and peptides has up to now required the use of selectively deuterated detergents. The unavailability of any of the common biochemical detergents in deuterated form has therefore limited to some extent the scope of this approach. Here a 1H NMR method is described which allows structure determination of membrane peptides and small membrane proteins by 1H 2D NMR in any type of non-deuterated detergent. The approach is based on regioselective excitation of protein resonances with DANTE-Z or spin-pinging pulse trains. It is shown that regioselective excitation of the amide-aromatic region of solubilized membrane proteins and peptides leads to an almost complete suppression of the two orders of magnitude higher contribution of the protonated detergent to the 1H NMR spectrum. Consistently TOCSY, COSY and NOESY sequences incorporating such regioselective excitation in the F2 dimension yield protein 1H 2D NMR spectra of quality comparable to those obtained in deuterated detergents. Regioselective TOCSY and NOESY spectra display all through-bond and through-space correlations within amide-aromatic protons and between these protons and aliphatic and alpha-protons. Regioselective COSY spectra provide scalar coupling constants between amide and alpha-protons. Application of the method to the membrane-active peptide mastoparan X, solubilized in n-octylglucoside, yields complete sequence-specific assignments and extensive secondary structure-related spatial proximities and coupling constants.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID: 7647553 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside...
nmrlearner Journal club 0 09-26-2011 06:42 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR. 2011 Sep 22; Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner Journal club 0 09-23-2011 05:30 PM
High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems.
High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems. High resolution NMR conformational studies of new bivalent NOP receptor antagonists in model membrane systems. Bioorg Chem. 2011 Feb;39(1):59-66 Authors: Borioni A, Bastanzio G, Delfini M, Mustazza C, Sciubba F, Tatti M, Del Giudice MR The interaction of new bivalent NOP receptor antagonists with dodecyl phosphatidylcholine micelles and DMPC/cholesterol liposomes was investigated in solution by high resolution NMR. The ligands are...
nmrlearner Journal club 0 05-06-2011 02:00 AM
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Sci. 2011 Feb 22; Authors: Hong M, Su Y Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the...
nmrlearner Journal club 0 02-24-2011 11:04 AM
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations Abstract We present a novel structure determination approach that exploits the global orientational restraints from RDCs to resolve ambiguous NOE assignments. Unlike traditional approaches that bootstrap the initial fold from ambiguous NOE assignments, we start by using RDCs to compute accurate secondary structure element (SSE) backbones at the beginning of structure calculation. Our structure determination package, called rdc-Panda (RDC-based SSE PAcking with...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Protein structure determination by high-resolution solid-state NMR spectroscopy: appl
Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. Related Articles Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc. 2005 Jun 22;127(24):8618-26 Authors: Zech SG, Wand AJ, McDermott AE High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] High-resolution NMR spectroscopy of membrane proteins in aligned bicelles.
High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. Related Articles High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J Am Chem Soc. 2004 Dec 1;126(47):15340-1 Authors: De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ High-resolution solid-state NMR spectra can be obtained from uniformly (15)N-labeled membrane proteins in magnetically aligned bicelles. Fast uniaxial diffusion about the axis of the bilayer normal results in single-line spectra that contain the orientational...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] An approach for high-throughput structure determination of proteins by NMR spectrosco
An approach for high-throughput structure determination of proteins by NMR spectroscopy. Related Articles An approach for high-throughput structure determination of proteins by NMR spectroscopy. J Biomol NMR. 2000 Nov;18(3):229-38 Authors: Medek A, Olejniczak ET, Meadows RP, Fesik SW An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing 13C-methyl labeled Val, Leu, and Ile (delta1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the...
nmrlearner Journal club 0 11-19-2010 08:29 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:30 PM.


Map