BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-16-2015, 11:21 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins.

High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins.

Related Articles High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins.

Subcell Biochem. 2015;72:199-214

Authors: Kitahara R

Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states - an alternatively folded state N2 and a locally disordered state I - between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71*% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5*kbar, where the N2 state is 97*% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion.


PMID: 26174383 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Distinct conformational states of the Alzheimer ?-amyloid peptide can be detected by high-pressure NMR spectroscopy.
Distinct conformational states of the Alzheimer ?-amyloid peptide can be detected by high-pressure NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Distinct conformational states of the Alzheimer ?-amyloid peptide can be detected by high-pressure NMR spectroscopy. Angew Chem Int Ed Engl. 2013 Aug 19;52(34):8943-7 Authors: Munte CE, Beck Erlach M, Kremer W, Koehler J, Kalbitzer HR PMID: 23843225
nmrlearner Journal club 0 06-06-2014 03:59 PM
[NMR paper] Intrinsic Allosteric Inhibition of Signaling Proteins by Targeting Rare Interaction States Detected by High-Pressure NMR Spectroscopy.
Intrinsic Allosteric Inhibition of Signaling Proteins by Targeting Rare Interaction States Detected by High-Pressure NMR Spectroscopy. Related Articles Intrinsic Allosteric Inhibition of Signaling Proteins by Targeting Rare Interaction States Detected by High-Pressure NMR Spectroscopy. Angew Chem Int Ed Engl. 2013 Nov 11; Authors: Kalbitzer HR, Rosnizeck IC, Munte CE, Narayanan SP, Kropf V, Spoerner M Abstract A new type of allosteric inhibition by small molecules is proposed that should be applicable to all proteins involved intrinsically...
nmrlearner Journal club 0 11-13-2013 09:22 PM
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin,
NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin, http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101594a/aop/images/medium/bi-2010-01594a_0006.gif Biochemistry DOI: 10.1021/bi101594a http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/HJPaBUvhJsw More...
nmrlearner Journal club 0 12-15-2010 12:16 AM
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin.
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Related Articles NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry. 2010 Dec 1; Authors: Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to...
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin.
High-resolution solid-state NMR studies on uniformly -labeled ubiquitin. Related Articles High-resolution solid-state NMR studies on uniformly -labeled ubiquitin. Chembiochem. 2005 Sep;6(9):1638-47 Authors: Seidel K, Etzkorn M, Heise H, Becker S, Baldus M Understanding of the effects of intermolecular interactions, molecular dynamics, and sample preparation on high-resolution magic-angle spinning NMR data is currently limited. Using the example of a uniformly -labeled sample of ubiquitin, we discuss solid-state NMR methods tailored to the...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Two folded conformers of ubiquitin revealed by high-pressure NMR.
Two folded conformers of ubiquitin revealed by high-pressure NMR. Related Articles Two folded conformers of ubiquitin revealed by high-pressure NMR. Biochemistry. 2001 Nov 13;40(45):13556-63 Authors: Kitahara R, Yamada H, Akasaka K High-pressure 15N/1H two-dimensional NMR spectroscopy has been utilized to study conformational fluctuation of a 76-residue protein ubiquitin at pH 4.5 at 20 degrees C. The on-line variable pressure cell technique is used in conjunction with a high-field NMR spectrometer operating at 750 MHz for 1H in the pressure...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif
Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Biochemistry. 1999 Jul 20;38(29):9242-53 Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline
High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. Related Articles High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR. 1997 Oct;10(3):289-92 Authors: Bax A, Tjandra N A mixture of dihexanoyl phosphatidylcholine and dimyristoyl phosphatidylcholine in water forms disc-shaped particles, often referred to as bicelles . These adopt an ordered, liquid crystalline phase, which can be maintained at very low concentrations of the bicelles (down to 3%...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:06 AM.


Map