BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-28-2018, 03:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,199
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.

Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.

Related Articles Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR.

Methods. 2018 Apr 24;:

Authors: Matlahov I, van der Wel PCA

Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.


PMID: 29702226 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach. Related Articles Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach. J Biomol NMR. 2016 Jan 19; Authors: Wang S, Matsuda I, Long F, Ishii Y Abstract This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce...
nmrlearner Journal club 0 01-20-2016 11:54 PM
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach Abstract This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40??80*kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055??15058, 2015) combines the reverse 13C,...
nmrlearner Journal club 0 01-19-2016 07:37 PM
[NMR paper] Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.
Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins. Solid State Nucl Magn Reson. 2015 Sep 14; Authors: Williams JK, Schmidt-Rohr K, Hong M Abstract The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm,...
nmrlearner Journal club 0 10-07-2015 11:27 AM
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins
Aromatic spectral editing Techniques for magic-Angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins Publication date: Available online 14 September 2015 Source:Solid State Nuclear Magnetic Resonance</br> Author(s): Jonathan K. Williams, Klaus Schmidt-Rohr, Mei Hong</br> The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, give highly overlapped 13C chemical shifts between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet...
nmrlearner Journal club 0 09-14-2015 10:42 PM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination Abstract Several techniques for spectral editing of 2D 13C??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N??CO peaks through 13C??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner Journal club 0 10-13-2012 04:42 AM
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
[NMR tweet] Invisibility Cloak: Scientists Achieve Optical Invisibility in Visible Light Range of Spectrum - http://t.co/LcnxpXv
Invisibility Cloak: Scientists Achieve Optical Invisibility in Visible Light Range of Spectrum - http://t.co/LcnxpXv Published by globexpert (globe-expert) on 2011-05-18T19:28:14Z Source: Twitter
nmrlearner Twitter NMR 0 05-18-2011 08:23 PM
[NMR tweet] Invisibility Cloak: Scientists Achieve Optical Invisibility in Visible Light Range of Spectrum http://bit.ly/mkGJX4
Invisibility Cloak: Scientists Achieve Optical Invisibility in Visible Light Range of Spectrum http://bit.ly/mkGJX4 Published by ZeitNews (ZeitNews) on 2011-05-18T15:22:21Z Source: Twitter
nmrlearner Twitter NMR 0 05-18-2011 04:01 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:44 AM.


Map