BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-17-2015, 04:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,771
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations

General Order Parameter based Correlation Analysis of Protein Backbone Motions between Experimental NMR Relaxation Measurements and Molecular Dynamics Simulations

Publication date: Available online 16 January 2015
Source:Biochemical and Biophysical Research Communications

Author(s): Qing Liu , Chaowei Shi , Lu Yu , Longhua Zhang , Ying Xiong , Changlin Tian

Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of 15N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S2) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S2) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S2 values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extened simple point charge) water model. S2 parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S2 calculated from the experimental NMR relaxation measurements, in a site-specific manner.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins Abstract There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not...
nmrlearner Journal club 0 11-21-2014 09:04 PM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. J Phys Chem B. 2014 Oct 28; Authors: Allnér O, Foloppe N, Nilsson L Abstract Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner Journal club 0 10-29-2014 03:51 PM
Time-averaged order parameter restraints in molecular dynamics simulations
Time-averaged order parameter restraints in molecular dynamics simulations Abstract A method is described that allows experimental \(S^2\) order parameters to be enforced as a time-averaged quantity in molecular dynamics simulations. The two parameters that characterize time-averaged restraining, the memory relaxation time and the weight of the restraining potential energy term in the potential energy function used in the simulation, are systematically investigated...
nmrlearner Journal club 0 10-14-2014 09:48 PM
[NMR paper] Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Related Articles Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Biophys J. 2014 Oct 7;107(7):1697-1702 Authors: Lo RH, Kroncke BM, Solomon TL, Columbus L Abstract The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane...
nmrlearner Journal club 0 10-09-2014 07:31 PM
[NMR paper] Searching For Protein Binding Sites From Molecular Dynamics Simulations and Paramagnetic Fragment-based NMR Studies.
Searching For Protein Binding Sites From Molecular Dynamics Simulations and Paramagnetic Fragment-based NMR Studies. Related Articles Searching For Protein Binding Sites From Molecular Dynamics Simulations and Paramagnetic Fragment-based NMR Studies. Biochim Biophys Acta. 2013 Dec 26; Authors: Bernini A, De Angelis LH, Morandi E, Spiga O, Santucci A, Assfalg M, Molinari H, Pillozzi S, Arcangeli A, Niccolai N Abstract Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces....
nmrlearner Journal club 0 01-01-2014 03:05 PM
Searching For Protein Binding Sites From Molecular Dynamics Simulations and Paramagnetic Fragment-based NMR Studies
Searching For Protein Binding Sites From Molecular Dynamics Simulations and Paramagnetic Fragment-based NMR Studies Publication date: Available online 27 December 2013 Source:Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics</br> Author(s): Andrea Bernini , Lucia Henrici De Angelis , Edoardo Morandi , Ottavia Spiga , Annalisa Santucci , Michael Assfalg , Henriette Molinari , Serena Pillozzi , Annarosa Arcangeli , Neri Niccolai</br> Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces....
nmrlearner Journal club 0 12-27-2013 11:54 AM
[NMR paper] Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Related Articles Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Biochemistry. 2005 Jul 19;44(28):9673-9 Authors: Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL Nuclear magnetic resonance (NMR) (15)N relaxation measurements of the olfactory marker protein (OMP) including longitudinal relaxation (T(1)), transverse relaxation (T(2)), and (15)N-{(1)H} NOE data were collected at low...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone
Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions. Related Articles Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions. Angew Chem Int Ed Engl. 2005 May 30;44(22):3394-9 Authors: Lange OF, Grubmüller H, de Groot BL
nmrlearner Journal club 0 11-25-2010 08:21 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:19 PM.


Map