BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-06-2015, 02:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

Related Articles On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

Proteins. 2015 Mar 4;

Authors: Sharp KA, O'Brien E, Kasinath V, Wand AJ

Abstract
Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. This article is protected by copyright. All rights reserved.


PMID: 25739366 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Banding of NMR-derived methyl order parameters: Implications for protein dynamics.
Banding of NMR-derived methyl order parameters: Implications for protein dynamics. Related Articles Banding of NMR-derived methyl order parameters: Implications for protein dynamics. Proteins. 2014 Mar 26; Authors: Sharp KA, Kasinath V, Wand AJ Abstract Our understanding of protein folding, stability and function has begun to more explicitly incorporate dynamical aspects. Nuclear magnetic resonance has emerged as a powerful experimental method for obtaining comprehensive site-resolved insight into protein motion. It has been observed that...
nmrlearner Journal club 0 03-29-2014 01:00 PM
[NMR paper] Determination of protein structures consistent with NMR order parameters.
Determination of protein structures consistent with NMR order parameters. Related Articles Determination of protein structures consistent with NMR order parameters. J Am Chem Soc. 2004 Jul 7;126(26):8090-1 Authors: Best RB, Vendruscolo M Order parameters obtained from NMR experiments characterize distributions of bond vector orientations. Their interpretation, however, usually requires the assumption of a particular motional model. We propose a multiple-copy simulation method in which the experimental order parameters are used as restraints in...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Temperature dependence of NMR order parameters and protein dynamics.
Temperature dependence of NMR order parameters and protein dynamics. Related Articles Temperature dependence of NMR order parameters and protein dynamics. J Am Chem Soc. 2003 Sep 17;125(37):11158-9 Authors: Massi F, Palmer AG The helical subdomain, HP36, of the F-actin-binding headpiece domain of chicken villin, is the smallest naturally occurring polypeptide that folds to a thermostable compact structure. Unconstrained molecular dynamics simulations and constrained molecular dynamics simulations using umbrella sampling are used to study the...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Correlation between 2H NMR side-chain order parameters and sequence conservation in g
Correlation between 2H NMR side-chain order parameters and sequence conservation in globular proteins. Related Articles Correlation between 2H NMR side-chain order parameters and sequence conservation in globular proteins. J Am Chem Soc. 2003 Jul 30;125(30):9004-5 Authors: Mittermaier A, Davidson AR, Kay LE Side-chain 2H NMR relaxation data have been collected for the SH3 domain from the Fyn tyrosine kinase and analyzed with respect to sequence preference and per-residue solvent accessibility. Residues that are highly preferred at a given...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Protein dynamics using frequency-dependent order parameters from analysis of NMR rela
Protein dynamics using frequency-dependent order parameters from analysis of NMR relaxation data. Related Articles Protein dynamics using frequency-dependent order parameters from analysis of NMR relaxation data. J Magn Reson. 2003 Mar;161(1):118-25 Authors: Idiyatullin D, Daragan VA, Mayo KH A novel approach is described to analyze NMR relaxation data on proteins. This method introduces the frequency-dependent order parameter, S(2)(omega), in order to estimate contributions to the generalized order parameter S(2) from different motional...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Contact model for the prediction of NMR N-H order parameters in globular proteins.
Contact model for the prediction of NMR N-H order parameters in globular proteins. Related Articles Contact model for the prediction of NMR N-H order parameters in globular proteins. J Am Chem Soc. 2002 Oct 30;124(43):12654-5 Authors: Zhang F, Brüschweiler R An analytical relationship is presented for the estimation of NMR S2 order parameters of N-HN vectors of the protein backbone from high-resolution protein structures. The relationship solely depends on close contacts of the peptide plane to the rest of the protein. Application of the...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics
Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics of protein G B1 domain mutants. Related Articles Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics of protein G B1 domain mutants. J Am Chem Soc. 2001 Jan 10;123(1):185-6 Authors: Stone MJ, Gupta S, Snyder N, Regan L
nmrlearner Journal club 0 11-19-2010 08:32 PM
Script to obtain order parameters from a structure
A Python script for prediction of order paramter from a structure is available from this website. The script is based on the following paper F. Zhang and R. Brüschweiler (2002) "Contact Model for the Prediction of NMR N-H Order Parameters in Globular Proteins" J. Am. Chem. Soc. 124(43), 12654-12655.
nmrlearner NMR dynamics 0 05-07-2005 09:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:58 AM.


Map