BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-16-2011, 07:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Exploring platelet chemokine antimicrobial activity: NMR backbone dynamics studies of NAP-2 and TC-1.

Exploring platelet chemokine antimicrobial activity: NMR backbone dynamics studies of NAP-2 and TC-1.

Exploring platelet chemokine antimicrobial activity: NMR backbone dynamics studies of NAP-2 and TC-1.

Antimicrob Agents Chemother. 2011 Feb 14;

Authors: Nguyen LT, Kwakman PH, Chan DI, Liu Z, de Boer L, Zaat SA, Vogel HJ

The platelet chemokines NAP-2 and TC-1 differ by only two amino acids at their carboxy-terminal end. Nevertheless they display a significant difference in their direct antimicrobial activity, with the longer NAP-2 being inactive and TC-1 being active. In an attempt to rationalize this difference in activity we have studied the structure and the dynamics of both proteins by NMR spectroscopy. Using (15)N isotope-labeled protein, we confirmed that the two monomeric proteins essentially have the same overall structure in aqueous solution. However NMR relaxation measurements provided evidence that the negatively charged carboxy-terminal residues of NAP-2 experience a restricted motion, while the carboxy-terminal end of TC-1 moves in an unrestricted manner. The same behavior was also seen in molecular dynamics simulations of both proteins. Detailed analysis of the protein motions through model-free analysis, as well as a determination of their overall correlation times, provided evidence for the existence of a monomer-dimer equilibrium in solution, which seemed to be more prevalent for TC-1. This finding was supported by diffusion NMR experiments. Dimerization generates a larger cationic surface area that would increase the antimicrobial activity of these chemokines. Moreover these data also show that the negatively charged carboxy-terminal end of NAP-2 (which is absent in TC-1) folds back over part of the positively charged helical region of the protein and in doing so interferes with the direct antimicrobial activity.

PMID: 21321145 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics.
Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics. Recent Developments in (15)N NMR Relaxation Studies that Probe Protein Backbone Dynamics. Top Curr Chem. 2011 Sep 7; Authors: Ishima R Abstract Nuclear Magnetic Resonance (NMR) relaxation is a powerful technique that provides information about internal dynamics associated with configurational energetics in proteins, as well as site-specific information involved in conformational equilibria. In particular, (15)N relaxation is a useful probe to...
nmrlearner Journal club 0 09-08-2011 06:50 PM
Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations.
Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations. Antimicrobial peptides and their superior fluorinated analogues: structure-activity relationships as revealed by NMR spectroscopy and MD calculations. Chembiochem. 2010 Nov 22;11(17):2424-32 Authors: Díaz MD, Palomino-Schätzlein M, Corzana F, Andreu C, Carbajo RJ, del Olmo M, Canales-Mayordomo A, Pineda-Lucena A, Asensio G, Jiménez-Barbero J The conformations of two synthetic pentapeptides with...
nmrlearner Journal club 0 05-04-2011 04:14 PM
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites.
NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites. NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites. FEBS J. 2010 Sep 3; Authors: Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by...
nmrlearner Journal club 0 09-10-2010 11:53 PM
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of t
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of the Tryptophan Repressor Protein (TrpR): Comparison with the 15N NMR Relaxation Profiles of Wild-Type and A77V Mutant Apo-TrpR Repressors http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100508u/aop/images/medium/bi-2010-00508u_0005.gifBiochemistry, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable). More...
nmrlearner Journal club 0 08-31-2010 10:50 PM
[NMR paper] Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies.
Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. Biochemistry. 1996 Apr 16;35(15):4867-77 Authors: MacKay JP, Shaw GL, King GF The backbone dynamics of the coiled-coil leucine zipper domain of c-Jun have been studied using proton-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation times,...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the unc
15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor. Related Articles 15N NMR relaxation studies of the FK506 binding protein: backbone dynamics of the uncomplexed receptor. Biochemistry. 1993 Sep 7;32(35):9000-10 Authors: Cheng JW, Lepre CA, Chambers SP, Fulghum JR, Thomson JA, Moore JM Backbone dynamics of the major tacrolimus (FK506) binding protein (FKBP-12, 107 amino acids) have been studied using 15N relaxation data derived from proton-detected two-dimensional 1H-15N NMR spectroscopy....
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1H-NMR studies of bovine platelet factor 4: histidine assignments and interactions wi
1H-NMR studies of bovine platelet factor 4: histidine assignments and interactions with heparin. Related Articles 1H-NMR studies of bovine platelet factor 4: histidine assignments and interactions with heparin. Biochim Biophys Acta. 1991 Jun 24;1078(2):208-18 Authors: Talpas CJ, Walz DA, Lee L 1H-NMR spectroscopy has been used to assign and to characterize the two histidine C2H resonances of the heparin binding protein, bovine platelet factor 4. One histidine has a pKa value of 6.51 at 27 degrees C; the second histidine exhibits 2 pKa values...
nmrlearner Journal club 0 08-21-2010 11:16 PM
Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of t
Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors. Related Articles Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors. Biochemistry. 2010 Aug 18; Authors: Goel A, Tripet BP, Tyler RC, Nebert LD, Copie V ...
nmrlearner Journal club 0 08-21-2010 01:02 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:20 PM.


Map