BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-14-2014, 12:53 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Exploring the Backbone Dynamics of Native Spider Silk Proteins in Black Widow Silk Glands with Solution-state NMR Spectroscopy

Exploring the Backbone Dynamics of Native Spider Silk Proteins in Black Widow Silk Glands with Solution-state NMR Spectroscopy

Publication date: Available online 13 June 2014
Source:Polymer

Author(s): Dian Xu , Jeffery L. Yarger , Gregory P. Holland

Spider dragline silk is an outstanding biopolymer with a strength that exceeds steel by weight and a toughness greater than high-performance fibers like Kevlar. For this reason, understanding how a spider converts the gel-like, aqueous protein spinning dope within the major ampullate (MA) gland into a super fiber is of great importance for developing future biomaterials based on spider silk. In this work, the initial state of the silk proteins within Black Widow MA glands was probed with solution-state NMR spectroscopy. 15N relaxation parameters, T1, T2 and 15N-{1H} steady-state NOE were measured for twelve backbone environments at two spectrometer frequencies, 500 and 800 MHz. The NMR relaxation parameters extracted for all twelve environments are consistent with MA silk protein backbone dynamics on the fast sub-nanosecond timescale. Therefore, it is concluded that the repetitive core of spider MA proteins are in an unfolded, highly flexible state in the MA gland.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.
Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations. Chem Commun (Camb). 2013 Jul 28;49(59):6680-2 Authors: Holland GP, Mou Q, Yarger JL Abstract Two-dimensional (2D) (1)H-(13)C...
nmrlearner Journal club 0 01-18-2014 11:31 AM
[NMR paper] Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction.
Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction. Biomacromolecules. 2013 Sep 11; Authors: Sampath S, Jenkins JE, Butler E, Kim J, Henning RW, Holland GP, Yarger JL Abstract This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show...
nmrlearner Journal club 0 09-13-2013 12:05 PM
[NMR paper] Amino Acid Analysis of spider dragline silk using (1)H NMR.
Amino Acid Analysis of spider dragline silk using (1)H NMR. Related Articles Amino Acid Analysis of spider dragline silk using (1)H NMR. Anal Biochem. 2013 May 30; Authors: Shi X, Holland GP, Yarger JL Abstract The amino acid composition of N. clavipes dragline silk fiber is determined by conducting (1)H Nuclear Magnetic Resonance (NMR) spectroscopy experiments on acid hydrolyzed material. N. clavipes dragline silk was found to consist of 43.0±0.6% Gly, 29.3±0.2% Ala, 9.1±0.1% Glx, 4.0±0.1% Leu, 3.3±0.1% Tyr, 3.4 ±0.2% Ser, 2.7±0.1%...
nmrlearner Journal club 0 06-04-2013 06:31 PM
[NMR paper] Probing site-specific (13)C/ (15)N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.
Probing site-specific (13)C/ (15)N-isotope enrichment of spider silk with liquid-state NMR spectroscopy. Probing site-specific (13)C/ (15)N-isotope enrichment of spider silk with liquid-state NMR spectroscopy. Anal Bioanal Chem. 2013 Feb 26; Authors: Shi X, Yarger JL, Holland GP Abstract Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods...
nmrlearner Journal club 0 02-26-2013 06:35 PM
Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.
Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR. Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR. Comp Biochem Physiol A Mol Integr Physiol. 2011 Jul;159(3):219-24 Authors: Creager MS, Izdebski T, Brooks AE, Lewis RV Abstract Spider silk has been evolutionarily optimized for contextual mechanical performance over the last 400 Ma. Despite precisely balanced mechanical properties,...
nmrlearner Journal club 0 09-02-2011 05:40 PM
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk.
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun (Camb). 2010 Sep 28;46(36):6714-6 Authors: Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP Two-dimensional homo- and heteronuclear solid-state MAS NMR experiments on (13)C/(15)N-proline labeled Argiope aurantia dragline silk provide evidence for an elastin-like beta-turn structure for the repetitive Gly-Pro-Gly-X-X motif prevalent in major...
nmrlearner Journal club 0 12-28-2010 03:31 PM
[NMR paper] NMR characterization of native liquid spider dragline silk from Nephila edulis.
NMR characterization of native liquid spider dragline silk from Nephila edulis. Related Articles NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules. 2004 May-Jun;5(3):834-9 Authors: Hronska M, van Beek JD, Williamson PT, Vollrath F, Meier BH Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Supercontracted spider dragline silk: a solid-state NMR study of the local structure.
Supercontracted spider dragline silk: a solid-state NMR study of the local structure. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):173-8 Authors: van Beek JD, Kümmerlen J, Vollrath F, Meier BH The local structure of supercontracted dragline silk from the spider Nephila madagascariensis was investigated by solid-state nuclear magnetic...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:34 AM.


Map