BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-02-2011, 05:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,969
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.

Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.

Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR.

Comp Biochem Physiol A Mol Integr Physiol. 2011 Jul;159(3):219-24

Authors: Creager MS, Izdebski T, Brooks AE, Lewis RV

Abstract
Spider silk has been evolutionarily optimized for contextual mechanical performance over the last 400 Ma. Despite precisely balanced mechanical properties, which have yet to be reproduced, the underlying molecular architecture of major ampullate spider silk can be simplified being viewed as a versatile block copolymer. Four primary amino acid motifs: polyalanine, (GA)(n), GPGXX, and GGX (X = G,A,S,Q,L,Y) will be considered in this study. Although synthetic mimetics of many of these amino acid motifs have been produced in several biological systems, the source of spider silk's mechanical integrity remains elusive. Mechanical robustness may be a product not only of the amino acid structure but also of the tertiary structure of the silk. Historically, solid state nuclear magnetic resonance (ssNMR) has been used to reveal the crystalline structure of the polyalanine motif; however, limitations in amino acid labeling techniques have obscured the structures of the GGX and GPGXX motifs thought to be responsible for the structural mobility of spider silk. We describe the use of metabolic pathways to label tyrosine for the first time as well as to improve the labeling efficiency of proline. These improved labeling techniques will allow the previously unknown tertiary structures of major ampullate silk to be probed.


PMID: 21334448 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media Abstract The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR...
nmrlearner Journal club 0 02-21-2012 03:40 AM
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. (13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. Biopolymers. 2011 Sep 12; Authors: Yazawa K, Yamaguchi E, Knight D, Asakura T Abstract We prepared the water soluble model peptide, (E)(8)...
nmrlearner Journal club 0 09-14-2011 08:07 PM
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture. Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture. Magn Reson Chem. 2011 Feb;49(2):65-9 Authors: Middleton DA Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the...
nmrlearner Journal club 0 01-22-2011 01:52 PM
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture. Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture. Magn Reson Chem. 2011 Jan 3; Authors: Middleton DA Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary...
nmrlearner Journal club 0 01-05-2011 09:51 PM
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk.
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun (Camb). 2010 Sep 28;46(36):6714-6 Authors: Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP Two-dimensional homo- and heteronuclear solid-state MAS NMR experiments on (13)C/(15)N-proline labeled Argiope aurantia dragline silk provide evidence for an elastin-like beta-turn structure for the repetitive Gly-Pro-Gly-X-X motif prevalent in major...
nmrlearner Journal club 0 12-28-2010 03:31 PM
[NMR paper] An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations.
An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations. Related Articles An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations. J Biomol NMR. 2005 Sep;33(1):15-24 Authors: Craft JW, Legge GB Protein structure determination using Nuclear Magnetic Resonance (NMR) requires the use of molecular dynamics programs that incorporate both NMR experimental and implicit atomic data. Atomic parameters for each amino acid type are encoded in...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR characterization of native liquid spider dragline silk from Nephila edulis.
NMR characterization of native liquid spider dragline silk from Nephila edulis. Related Articles NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules. 2004 May-Jun;5(3):834-9 Authors: Hronska M, van Beek JD, Williamson PT, Vollrath F, Meier BH Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Supercontracted spider dragline silk: a solid-state NMR study of the local structure.
Supercontracted spider dragline silk: a solid-state NMR study of the local structure. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):173-8 Authors: van Beek JD, K├╝mmerlen J, Vollrath F, Meier BH The local structure of supercontracted dragline silk from the spider Nephila madagascariensis was investigated by solid-state nuclear magnetic...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:47 AM.


Map