BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-05-2014, 09:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,995
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

Related Articles Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

J Phys Chem A. 2014 Apr 10;118(14):2618-28

Authors: Altheimer BD, Mehta MA

Abstract
Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of dipeptides containing alanine, valine, and isoleucine with very similar crystal structures. We report the (13)C (carbonyl and C?) and (15)N (amine and amide) solid-state NMR isotropic chemical shifts in a series of seven such isostructural porous dipeptides as well as shift tensor data for the carbonyl and amide sites. Using their known crystal structures and aided by ab initio quantum chemical calculations for the resonance assignments, we elucidate trends relating local structure, hydrogen-bonding patterns, and chemical shift. We find good correlation between the backbone dihedral angles and the C?1 and C?2 shifts. For the C1 shift tensor, the ?11 value shifts downfield as the hydrogen-bond distance increases, ?22 shifts upfield, and ?33 shows little variation. The C2 shift tensor shows no appreciable correlation with structural parameters. For the N2 tensor, ?11 shows little dependence on the hydrogen-bond length, whereas ?22 and ?33 both show a decrease in shielding as the hydrogen bond shortens. Our analysis teases apart some, but not all, structural contributors to the observed differences the solid-state NMR chemical shifts.


PMID: 24654604 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Interpreting Protein Structural Dynamics from NMR Chemical Shifts
Interpreting Protein Structural Dynamics from NMR Chemical Shifts Paul Robustelli, Kate A. Stafford and Arthur G. Palmer http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja300265w/aop/images/medium/ja-2012-00265w_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja300265w http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/AvG321E_RMU
nmrlearner Journal club 0 03-28-2012 09:28 PM
Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters.
Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters. Related Articles Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters. Acta Pharm. 2010 Sep 1;60(3):237-254 Authors: Taka? MJ In the present study, the NMR spectroscopic features of...
nmrlearner Journal club 0 12-08-2010 06:21 PM
[NMR paper] Secondary structural effects on protein NMR chemical shifts.
Secondary structural effects on protein NMR chemical shifts. Related Articles Secondary structural effects on protein NMR chemical shifts. J Biomol NMR. 2004 Nov;30(3):233-44 Authors: Wang Y For an amino acid in protein, its chemical shift, delta(phi, psi)(s), is expressed as a function of its backbone torsion angles (phi and psi) and secondary state (s): delta(phi, psi)(s=deltaphi, psi)_coil+Deltadelta(phi, psi)_s), where delta(phi, psi)(coil) represents its chemical shift at coil state (s=coil); Delta delta(phi, psi)(s) (s=sheet or helix) is...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initi
Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Related Articles Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science. 1993 Jun 4;260(5113):1491-6 Authors: de Dios AC, Pearson JG, Oldfield E Recent theoretical developments permit the prediction of 1H, 13C, 15N, and 19F nuclear magnetic resonance chemical shifts in proteins and offer new ways of analyzing secondary and tertiary structure as well as for probing protein electrostatics. For 13C,...
nmrlearner Journal club 0 08-21-2010 11:53 PM
Use of chemical shifts for structural studies of nucleic acids
Use of chemical shifts for structural studies of nucleic acids Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 1 February 2010</br> Sik Lok, Lam , Lai Man, Chi</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM
Mapping of protein structural ensembles by chemical shifts
Abstract Applying the chemical shift prediction programs SHIFTX and SHIFTS to a data base of protein structures with known chemical shifts we show that the averaged chemical shifts predicted from the structural ensembles explain better the experimental data than the lowest energy structures. This is in agreement with the fact that proteins in solution occur in multiple conformational states in fast exchange on the chemical shift time scale. However, in contrast to the real conditions in solution at ambient temperatures, the standard NMR structural calculation methods as well chemical shift...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Sequential nearest-neighbor effects on computed 13Cα chemical shifts
Abstract To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Density functional calculations of 15N chemical shifts in solvated dipeptides
Density functional calculations of 15N chemical shifts in solvated dipeptides Ling Cai, David Fushman and Daniel S. Kosov Journal of Biomolecular NMR; 2008; 41(2) pp 77 - 88 Abstract: We performed density functional calculations to examine the effects of solvation, hydrogen bonding, backbone conformation, and the side chain on 15N chemical shielding in proteins. We used N-methylacetamide (NMA) and N-formyl-alanyl-X (with X being one of the 19 naturally occurring amino acids excluding proline) as model systems. In addition, calculations were performed for selected fragments from...
daniel Journal club 0 08-03-2008 03:46 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:10 AM.


Map