BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-14-2014, 08:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Effects of J couplings and unobservable minor states on kinetics parameters extracted from CEST data

Effects of J couplings and unobservable minor states on kinetics parameters extracted from CEST data

Publication date: Available online 31 October 2014
Source:Journal of Magnetic Resonance

Author(s): Yang Zhou , Daiwen Yang

Chemical Exchange Saturation Transfer (CEST) experiments have emerged as a powerful tool for characterizing dynamics and sparse populated conformers of protein in slow exchanging systems. We show that J couplings and ‘invisible’ minor states can cause systematic errors in kinetics parameters and chemical shifts extracted from CEST data. For weakly coupled spin systems, the J coupling effect can be removed using an approximation method. This method is warranted through detailed theoretical derivation, supported by results from simulations and experiments on an acyl carrier protein domain. Simulations demonstrate that the effect of ‘invisible’ minor states on the extracted kinetics parameters depends on the chemical shifts, populations, exchange rates of the ‘invisible’ states to the observed major or minor state and exchange models. Moreover, the chemical shifts of the observed minor state can also be influenced by the “invisible” minor states. The presence of an off-pathway folding intermediate in the acyl carrier protein domain explains why the exchange rates obtained with a two-state model from individual residues that displayed only two obvious dips varied significantly and the extracted exchange rates for 15N and 13CO spins located in the same peptide bond could be very different. The approximation method described here simplifies CEST data analysis in many situations where the coupling effect cannot be ignored and decoupling techniques are not desirable. In addition, this study also raises alerts for ‘invisible’ minor states which can cause errors in not only kinetics parameters but also chemical shifts of the observed minor state.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Characterization of the Simultaneous Decay Kinetics of Metarhodopsin States II and III in Rhodopsin by Solution-State NMR Spectroscopy.
Characterization of the Simultaneous Decay Kinetics of Metarhodopsin States II and III in Rhodopsin by Solution-State NMR Spectroscopy. Related Articles Characterization of the Simultaneous Decay Kinetics of Metarhodopsin States II and III in Rhodopsin by Solution-State NMR Spectroscopy. Angew Chem Int Ed Engl. 2014 Feb 6; Authors: Stehle J, Silvers R, Werner K, Chatterjee D, Gande S, Scholz F, Dutta A, Wachtveitl J, Klein-Seetharaman J, Schwalbe H Abstract The mammalian visual dim-light photoreceptor rhodopsin is considered a prototype G...
nmrlearner Journal club 0 02-08-2014 05:45 PM
[NMR paper] Mapping the population of protein conformational energy sub-States from NMR dipolar couplings.
From Mendeley Biomolecular NMR group: Mapping the population of protein conformational energy sub-States from NMR dipolar couplings. Angewandte Chemie (International ed. in English) (2013). Volume: 52, Issue: 11. Pages: 3181-5. Paul Guerry, Loïc Salmon, Luca Mollica, Jose-Luis Ortega Roldan, Phineus Markwick, Nico a J van Nuland, J Andrew McCammon, Martin Blackledge et al. Molecular dynamics: A general method for the statistical mechanical description of conformational energy landscapes of proteins in solution is proposed. This method combines NMR residual dipolar couplings (RDCs),...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] A Computational Study of the Effects of (13) C-(13) C Scalar Couplings on (13) C CEST NMR Spectra: Towards Studies on a Uniformly (13) C-Labeled Protein.
A Computational Study of the Effects of (13) C-(13) C Scalar Couplings on (13) C CEST NMR Spectra: Towards Studies on a Uniformly (13) C-Labeled Protein. A Computational Study of the Effects of (13) C-(13) C Scalar Couplings on (13) C CEST NMR Spectra: Towards Studies on a Uniformly (13) C-Labeled Protein. Chembiochem. 2013 Jun 19; Authors: Vallurupalli P, Bouvignies G, Kay LE Abstract Read the label: The NMR CEST experiment can be used to reconstruct spectra of sparsely populated, transiently formed protein conformers so long as...
nmrlearner Journal club 0 06-21-2013 01:10 PM
[NMR paper] Mapping the population of protein conformational energy sub-States from NMR dipolar couplings.
From Mendeley Biomolecular NMR group: Mapping the population of protein conformational energy sub-States from NMR dipolar couplings. Angewandte Chemie (International ed. in English) (2013). Volume: 52, Issue: 11. Pages: 3181-5. Paul Guerry, Loïc Salmon, Luca Mollica, Jose-Luis Ortega Roldan, Phineus Markwick, Nico a J van Nuland, J Andrew McCammon, Martin Blackledge et al. Molecular dynamics: A general method for the statistical mechanical description of conformational energy landscapes of proteins in solution is proposed. This method combines NMR residual dipolar couplings (RDCs),...
nmrlearner Journal club 0 04-11-2013 03:08 PM
[NMR paper] Mapping the Population of Protein Conformational Energy Sub-States from NMR Dipolar Couplings.
Mapping the Population of Protein Conformational Energy Sub-States from NMR Dipolar Couplings. Related Articles Mapping the Population of Protein Conformational Energy Sub-States from NMR Dipolar Couplings. Angew Chem Int Ed Engl. 2013 Feb 1; Authors: Guerry P, Salmon L, Mollica L, Ortega Roldan JL, Markwick P, van Nuland NA, McCammon JA, Blackledge M Abstract Molecular dynamics: A general method for the statistical mechanical description of conformational energy landscapes of proteins in solution is proposed. This method combines NMR...
nmrlearner Journal club 0 02-03-2013 10:19 AM
[NMRpipe Yahoo group] Re: Phasing 1H-15N HSQC Kinetics data from Bruker Instrument
Re: Phasing 1H-15N HSQC Kinetics data from Bruker Instrument De. DeRose, Thank you for directing me to the "macro edit" pull down in NMRDraw. This, in addition to your comment regarding dwell times, has seemed to solve More...
NMRpipe Yahoo group news News from other NMR forums 0 08-10-2011 02:15 AM
[NMRpipe Yahoo group] Re: Phasing 1H-15N HSQC Kinetics data from Bruker Instrument
Re: Phasing 1H-15N HSQC Kinetics data from Bruker Instrument Hi Nicole, If the first data point in the indirect dimension started at half the dwell time, the phase correction in the indirect dimension should be -p0 -90 More...
NMRpipe Yahoo group news News from other NMR forums 0 08-06-2011 01:27 AM
Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters.
Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters. Related Articles Effects of substituents on the NMR features of basic bicyclic ring systems of fluoroquinolone antibiotics and the relationships between NMR chemical shifts, molecular descriptors and drug-likeness parameters. Acta Pharm. 2010 Sep 1;60(3):237-254 Authors: Taka? MJ In the present study, the NMR spectroscopic features of...
nmrlearner Journal club 0 12-08-2010 06:21 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:42 AM.


Map