BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-15-2018, 02:48 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure and dynamics of plant TatA in micelles and lipid bilayers studied by solution NMR.

Structure and dynamics of plant TatA in micelles and lipid bilayers studied by solution NMR.

Structure and dynamics of plant TatA in micelles and lipid bilayers studied by solution NMR.

FEBS J. 2018 Apr 14;:

Authors: Pettersson P, Ye W, Jakob M, Tannert F, Klösgen RB, Mäler L

Abstract
The twin-arginine translocase (Tat) transports folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. In Gram-negative bacteria and chloroplasts the translocon consists of three subunits, TatA, TatB, and TatC, of which TatA is responsible for the actual membrane translocation of the substrate. Herein we report on the structure, dynamics and lipid interactions of a fully functional C-terminally truncated "core TatA" from Arabidopsis thaliana using solution-state NMR. Our results show that TatA consists of a short N-terminal transmembrane helix (TMH), a short connecting linker (hinge) and a long region with propensity to form an amphiphilic helix (APH). The dynamics of TatA were characterized using 15 N relaxation NMR in combination with model-free analysis. The TMH has order parameters characteristic of a well-structured helix, the hinge is somewhat less rigid, while the APH has lower order parameters indicating structural flexibility. The TMH is short with a surprisingly low protection from solvent, and only the first part of the APH is protected to some extent. In order to uncover possible differences in TatA's structure and dynamics in detergent compared to in a lipid bilayer, fast-tumbling bicelles and large unilamellar vesicles were used. Results indicate that the helicity of TatA increases in both the TMH and APH in the presence of lipids, and that the N-terminal part of the TMH is significantly more rigid. The results indicate that plant TatA has a significant structural plasticity and a capability to adapt to local environments. This article is protected by copyright. All rights reserved.


PMID: 29654717 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure.
Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure. Related Articles Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure. PLoS One. 2014;9(8):e103157 Authors: Zhang Y, Hu Y, Li H, Jin C Abstract Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across...
nmrlearner Journal club 0 08-05-2014 04:47 PM
[NMR paper] Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs.
Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta. 2012 Jun;1818(6):1562-9 Authors: Yu TY, Raschle T, Hiller S, Wagner G Abstract Three isoforms of the human voltage-dependent anion channel (VDAC), located...
nmrlearner Journal club 0 04-04-2013 08:50 PM
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy.
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. J Am Chem Soc. 2011 Mar 7; Authors: Cady SD, Wang J, Wu Y, Degrado WF, Hong M The transmembrane domain of the influenza M2...
nmrlearner Journal club 0 03-09-2011 02:20 PM
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy Sarah D. Cady, Jun Wang, Yibing Wu, William F. DeGrado and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja102581n/aop/images/medium/ja-2010-02581n_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja102581n http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 03-08-2011 04:02 AM
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J. 2010 Nov 17;99(10):3282-9 Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...
nmrlearner Journal club 0 03-03-2011 12:34 PM
[NMR paper] Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy wit
Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Related Articles Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Chembiochem. 2004 Apr 2;5(4):467-73 Authors: Hilty C, Wider G, Fernández C, Wüthrich K For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed...
nmrlearner Journal club 0 11-24-2010 09:51 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis. Related Articles Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis. J Am Chem Soc. 2010 Aug 20; Authors: Hu Y, Zhao E, Li H, Xia B, Jin C The twin-arginine transport (Tat) system translocates folded proteins across the bacterial cytoplasmic or chloroplast thylakoid membrane of plants. The Tat system in most Gram-positive...
nmrlearner Journal club 0 08-25-2010 02:04 PM
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport S
Solution NMR Structure of the TatA Component of the Twin-Arginine Protein Transport System from Gram-Positive Bacterium Bacillus subtilis Yunfei Hu et al http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1053785/aop/images/medium/ja-2010-053785_0001.gifJournal of the American Chemical Society, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable). Source: Journal of the American Chemical Society
nmrlearner Journal club 0 08-21-2010 05:17 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:43 AM.


Map