BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Discovery and Structural Characterization of a New Inhibitor Series of HIV-1 Nucleocapsid Function: NMR Solution Structure Determination of a Ternary Complex Involving a 2:1 Inhibitor/NC Stoichiometry. (http://www.bionmr.com/forum/journal-club-9/discovery-structural-characterization-new-inhibitor-series-hiv-1-nucleocapsid-function-nmr-solution-structure-determination-ternary-complex-involving-2-1-inhibitor-nc-stoichiometry-17629/)

nmrlearner 03-15-2013 11:17 AM

Discovery and Structural Characterization of a New Inhibitor Series of HIV-1 Nucleocapsid Function: NMR Solution Structure Determination of a Ternary Complex Involving a 2:1 Inhibitor/NC Stoichiometry.
 
Discovery and Structural Characterization of a New Inhibitor Series of HIV-1 Nucleocapsid Function: NMR Solution Structure Determination of a Ternary Complex Involving a 2:1 Inhibitor/NC Stoichiometry.

Related Articles Discovery and Structural Characterization of a New Inhibitor Series of HIV-1 Nucleocapsid Function: NMR Solution Structure Determination of a Ternary Complex Involving a 2:1 Inhibitor/NC Stoichiometry.

J Mol Biol. 2013 Feb 26;

Authors: Goudreau N, Hucke O, Faucher AM, Grand-Maître C, Lepage O, Bonneau PR, Mason SW, Titolo S

Abstract
The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.


PMID: 23485336 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 07:55 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013