BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin. (http://www.bionmr.com/forum/journal-club-9/dipolar-assisted-rotational-resonance-nmr-tryptophan-tyrosine-rhodopsin-10306/)

nmrlearner 11-24-2010 09:51 PM

Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin.
 
Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin.

Related Articles Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin.

J Biomol NMR. 2004 May;29(1):11-20

Authors: Crocker E, Patel AB, Eilers M, Jayaraman S, Getmanova E, Reeves PJ, Ziliox M, Khorana HG, Sheves M, Smith SO

Two dimensional (2D) solid-state (13)C.(13)C dipolar recoupling experiments are performed on a series of model compounds and on the visual pigment rhodopsin to establish the most effective method for long range distance measurements in reconstituted membrane proteins. The effects of uniform labeling, inhomogeneous B(1) fields, relaxation and dipolar truncation on cross peak intensity are investigated through NMR measurements of simple amino acid and peptide model compounds. We first show that dipolar assisted rotational resonance (DARR) is more effective than RFDR in recoupling long-range dipolar interactions in these model systems. We then use DARR to establish (13)C-(13)C correlations in rhodopsin. In rhodopsin containing 4'-(13)C-Tyr and 8,19-(13)C retinal, we observe two distinct tyrosine-to-retinal correlations in the DARR spectrum. The most intense cross peak arises from a correlation between Tyr268 and the retinal 19-(13)CH(3), which are 4.8 A apart in the rhodopsin crystal structure. A second cross peak arises from a correlation between Tyr191 and the retinal 19-(13)CH(3), which are 5.5 A apart in the crystal structure. These data demonstrate that long range (13)C em leader (13)C correlations can be obtained in non-crystalline integral membrane proteins reconstituted into lipid membranes containing less than 150 nmoles of protein. In rhodopsin containing 2-(13)C Gly121 and U-(13)C Trp265, we do not observe a Trp-Gly cross peak in the DARR spectrum despite their close proximity (3.6 A) in the crystal structure. Based on model compounds, the absence of a (13)C em leader (13)C cross peak is due to loss of intensity in the diagonal Trp resonances rather than to dipolar truncation.

PMID: 15017136 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 12:39 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013