BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 1.00 average. Display Modes
  #1  
Unread 04-06-2011, 10:54 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings

Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings

Nikolaos G. Sgourakis, Oliver F. Lange, Frank DiMaio, Ingemar Andre?, Nicholas C. Fitzkee, Paolo Rossi, Gaetano T. Montelione, Ad Bax and David Baker



Journal of the American Chemical Society
DOI: 10.1021/ja111318m




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. J Am Chem Soc. 2011 Apr 5; Authors: Sgourakis NG, Lange OF, Dimaio F, Andre? I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR...
nmrlearner Journal club 0 04-07-2011 09:54 PM
Residual dipolar couplings: are multiple independent alignments always possible?
Residual dipolar couplings: are multiple independent alignments always possible? Abstract RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the proteinā??s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some...
nmrlearner Journal club 0 12-26-2010 04:43 AM
[NMR paper] Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Related Articles Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins. 2005 Aug 15;60(3):367-81 Authors: van Dijk AD, Fushman D, Bonvin AM When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Residual dipolar couplings in NMR structure analysis.
Residual dipolar couplings in NMR structure analysis. Related Articles Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct. 2004;33:387-413 Authors: Lipsitz RS, Tjandra N Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar c
Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints. Related Articles Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints. J Biomol NMR. 2004 Jan;28(1):31-41 Authors: Jensen PR, Axelsen JB, Lerche MH, Poulsen FM We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Residual dipolar couplings: synergy between NMR and structural genomics.
Residual dipolar couplings: synergy between NMR and structural genomics. Related Articles Residual dipolar couplings: synergy between NMR and structural genomics. J Biomol NMR. 2002 Jan;22(1):1-8 Authors: Al-Hashimi HM, Patel DJ Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However,...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Protein structural motif recognition via NMR residual dipolar couplings.
Protein structural motif recognition via NMR residual dipolar couplings. Related Articles Protein structural motif recognition via NMR residual dipolar couplings. J Am Chem Soc. 2001 Feb 14;123(6):1222-9 Authors: Andrec M, Du P, Levy RM NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we...
nmrlearner Journal club 0 11-19-2010 08:32 PM
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media Ke Ruan, Kathryn B. Briggman and Joel R. Tolman Journal of Biomolecular NMR; 2008; 41(2) pp 61 - 76 Abstract: The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to...
daniel Journal club 0 08-03-2008 03:54 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:22 PM.


Map