BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-13-2020, 09:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization.

Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization.

Related Articles Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization.

Chem Sci. 2020 Jun 21;11(23):5935-5943

Authors: Wang Y, Kim J, Hilty C

Abstract
Elucidation of small molecule-protein interactions provides essential information for understanding biological processes such as cellular signaling, as well as for rational drug development. Here, multi-dimensional NMR with sensitivity enhancement by dissolution dynamic nuclear polarization (D-DNP) is shown to allow the determination of the binding epitope of folic acid when complexed with the target dihydrofolate reductase. Protein signals are selectively enhanced by polarization transfer from the hyperpolarized ligand. A pseudo three-dimensional data acquisition with ligand-side Hadamard encoding results in protein-side [13C, 1H] chemical shift correlations that contain intermolecular nuclear Overhauser effect (NOE) information. A scoring function based on this data is used to select pre-docked ligand poses. The top five poses are within 0.76 Å root-mean-square deviation from a reference structure for the encoded five protons, showing improvements compared with the poses selected by an energy-based scoring function without experimental inputs. The sensitivity enhancement provided by the D-DNP combined with multi-dimensional NMR increases the speed and potentially the selectivity of structure elucidation of ligand binding epitopes.


PMID: 32874513 [PubMed]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes
From The DNP-NMR Blog: High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Hermkens, N.K.J., et al., High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes. J. Magn. Reson., 2017. 276: p. 122-127. https://doi.org/10.1016/j.jmr.2017.01.011
nmrlearner News from NMR blogs 0 05-24-2017 07:40 PM
[NMR paper] Probing the Binding Modes of a Multi-Domain Protein to Lipid-Based Nanoparticles by Relaxation-Based NMR.
Probing the Binding Modes of a Multi-Domain Protein to Lipid-Based Nanoparticles by Relaxation-Based NMR. Related Articles Probing the Binding Modes of a Multi-Domain Protein to Lipid-Based Nanoparticles by Relaxation-Based NMR. J Phys Chem Lett. 2017 May 22;: Authors: Ceccon A, Tugarinov V, Boughton AJ, Fushman D, Clore GM Abstract The interactions of two model multi-domain proteins - covalently linked di-ubiquitins, Ub2 - with lipid-based nanoparticles have been quantitatively probed by the measurements of NMR lifetime...
nmrlearner Journal club 0 05-23-2017 04:45 PM
NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase
NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase Abstract Chitosan interaction with chitosanase was examined through analysis of spectral line shapes in the NMR HSQC titration experiments. We established that the substrate, chitosan hexamer, binds to the enzyme through the three-state induced-fit mechanism with fast formation of the encounter complex followed by slow isomerization of the bound-state into the final conformation. Mapping of the chemical shift perturbations in two sequential steps of the mechanism...
nmrlearner Journal club 0 04-10-2017 12:51 AM
[NMR paper] Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders.
Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Angew Chem Int Ed Engl. 2017 Apr 07;: Authors: Wälti MA, Riek R, Orts J Abstract In early drug discovery approaches, screening hits are often weak affinity binders that are difficult to characterize in structural detail, particularly towards obtaining the 3D structure of...
nmrlearner Journal club 0 04-08-2017 10:57 AM
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data
Determination of ligand binding modes in weak proteinâ??ligand complexes using sparse NMR data Abstract We describe a general approach to determine the binding pose of small molecules in weakly bound proteinâ??ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of...
nmrlearner Journal club 0 11-19-2016 08:35 PM
[NMR paper] Fast multi-dimensional NMR acquisition and processing using the sparse FFT.
Fast multi-dimensional NMR acquisition and processing using the sparse FFT. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Fast multi-dimensional NMR acquisition and processing using the sparse FFT. J Biomol NMR. 2015 Sep;63(1):9-19 Authors: Hassanieh H, Mayzel M, Shi L, Katabi D, Orekhov VY Abstract Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct...
nmrlearner Journal club 0 06-21-2016 01:30 PM
Fast multi-dimensional NMR acquisition and processing using the sparse FFT
Fast multi-dimensional NMR acquisition and processing using the sparse FFT Abstract Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality...
nmrlearner Journal club 0 06-30-2015 11:41 AM
[NMR paper] Fast multi-dimensional NMR of proteins.
Fast multi-dimensional NMR of proteins. Related Articles Fast multi-dimensional NMR of proteins. J Biomol NMR. 2003 Apr;25(4):349-54 Authors: Kupce E, Freeman R Three-dimensional HNCO and HNCA subspectra from a small protein (agitoxin, 4 kDa, enriched in carbon-13 and nitrogen-15), have been obtained by direct frequency-domain excitation of selected carbon and nitrogen sites. This new technique applies an array of several simultaneous soft radiofrequency spin-inversion pulses, encoded (on or off) according to nested Hadamard matrices, and the...
nmrlearner Journal club 0 11-24-2010 09:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:05 AM.


Map