BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-23-2020, 12:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,617
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Current approaches for integrating solution NMR spectroscopy and small angle scattering to study the structure and dynamics of biomolecular complexes.

Current approaches for integrating solution NMR spectroscopy and small angle scattering to study the structure and dynamics of biomolecular complexes.

Related Articles Current approaches for integrating solution NMR spectroscopy and small angle scattering to study the structure and dynamics of biomolecular complexes.

J Mol Biol. 2020 Mar 18;:

Authors: Delhommel F, Gabel F, Sattler M

Abstract
The study of complex and dynamic biomolecular assemblies is a key challenge in structural biology and requires the use of multiple methodologies providing complementary spatial and temporal information. NMR spectroscopy is a powerful technique that allows high-resolution structure determination of biomolecules as well as investigating their dynamic properties in solution. However, for high molecular weight systems, such as biomolecular complexes or multi-domain proteins, it is often only possible to obtain sparse NMR data, posing significant challenges to structure determination. Combining NMR data with information obtained from other solution techniques is therefore an attractive approach. The combination of NMR with small angle X-ray and/or neutron scattering (SAXS/SANS) has been shown to be particularly fruitful. These scattering approaches provide low resolution information of biomolecules in solution and reflect ensemble-averaged contributions of dynamic conformations for scattering molecules up to Megadalton molecular weight. Here, we review recent developments in the combination of NMR and SAS experiments. We briefly outline the different types of information that provided by these two approaches. We then discuss computational methods that have been developed to integrate NMR and SAS data, particularly considering the presence of dynamic structural ensembles and flexibility of the investigated biomolecules. Finally, recent examples of the successful combination of NMR and SAS are presented to illustrate the utility of their combination.


PMID: 32199983 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data.
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data. Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data. Structure. 2014 Nov 6;22(12):1862-1874 Authors: Lemak A, Wu B, Yee A, Houliston S, Lee HW, Gutmanas A, Fang X, Garcia M, Semesi A, Wang YX, Prestegard JH, Arrowsmith CH Abstract Multidomain proteins in which individual domains are connected by linkers often possess inherent...
nmrlearner Journal club 0 12-03-2014 04:05 PM
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data
Structural Characterization of a Flexible Two-Domain Protein in Solution Using Small Angle X-Ray Scattering and NMR Data Publication date: Available online 6 November 2014 Source:Structure</br> Author(s): Alexander Lemak , Bin Wu , Adelinda Yee , Scott Houliston , Hsiau-Wei Lee , Aleksandras Gutmanas , Xianyang Fang , Maite Garcia , Anthony Semesi , Yun-Xing Wang , James*H. Prestegard , Cheryl*H. Arrowsmith</br> Multidomain proteins in which individual domains are connected by linkers often possess inherent interdomain flexibility that significantly...
nmrlearner Journal club 0 11-07-2014 09:09 AM
Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calculations
Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calculations Publication date: Available online 3 April 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Charles D. Schwieters , G. Marius Clore</br> This contribution describes the use of small and wide angle X-ray and small angle neutron scattering for biomolecular structure calculation using the program Xplor-NIH, both with and without NMR data. The current algorithms used for calculating scattering curves are described, and the use of scattering data as a...
nmrlearner Journal club 0 04-04-2014 01:19 PM
[NMR paper] The Dynamic Duo: Combining NMR and Small Angle Scattering in Structural Biology.
The Dynamic Duo: Combining NMR and Small Angle Scattering in Structural Biology. The Dynamic Duo: Combining NMR and Small Angle Scattering in Structural Biology. Protein Sci. 2014 Mar 29; Authors: Hennig J, Sattler M Abstract Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods and computational approaches now enable structural analysis of protein complexes with increasing complexity that more...
nmrlearner Journal club 0 04-02-2014 11:54 PM
[NMR paper] Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and ?-Synuclein in Solution from NMR and Small Angle Scattering.
Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and ?-Synuclein in Solution from NMR and Small Angle Scattering. Related Articles Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and ?-Synuclein in Solution from NMR and Small Angle Scattering. Structure. 2013 Dec 18; Authors: Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda M, Jensen MR, Biernat J, Becker S, Mandelkow E, Zweckstetter M, Blackledge M Abstract The development of molecular descriptions of intrinsically...
nmrlearner Journal club 0 12-24-2013 01:04 PM
NMR and Small Angle Scattering-based structural analysis of protein complexes in solu
NMR and Small Angle Scattering-based structural analysis of protein complexes in solution. Related Articles NMR and Small Angle Scattering-based structural analysis of protein complexes in solution. J Struct Biol. 2010 Nov 10; Authors: Madl T, Gabel F, Sattler M Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of...
nmrlearner Journal club 0 11-16-2010 04:13 PM
A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints
A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints F. Gabel, B. Simon, M. Nilges, M. Petoukhov, D. Svergun and M. Sattler Journal of Biomolecular NMR; 2008; 41(4); pp 199-208 Abstract: We present the implementation of a target function based on Small Angle Scattering data (Gabel et al. Eur Biophys J 35(4):313–327, 2006) into the Crystallography and NMR Systems (CNS) and demonstrate its utility in NMR structure calculations by simultaneous application of small angle scattering (SAS) and residual dipolar coupling (RDC)...
Abe Journal club 0 09-21-2008 11:30 PM
Multidomain Protein Structures from NMR & Solution Small-Angle X-ray Scattering
http://pubs.acs.org/isubscribe/journals/jacsat/127/i47/figures/ja054342mn00001.gif Refinement of Multidomain Protein Structures by Combination of Solution Small-Angle X-ray Scattering and NMR Data Alexander Grishaev,* Justin Wu, Jill Trewhella, and Ad Bax* Contribution from the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 J. Am. Chem. Soc.; 2005; 127(47) pp 16621 -...
nmrlearner Journal club 0 01-12-2006 08:23 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:54 AM.


Map