BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-26-2020, 07:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Correction to: A suite of 19 F based relaxation dispersion experiments to assess biomolecular motions

Correction to: A suite of 19 F based relaxation dispersion experiments to assess biomolecular motions

In the original publication, Figures 3 and 6 wereÂ*displayed incorrectlyÂ*due to a mistake made by the publisher. The correct version of Figs. 3 and 6 are given below.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A suite of 19 F based relaxation dispersion experiments to assess biomolecular motions
A suite of 19 F based relaxation dispersion experiments to assess biomolecular motions Abstract Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1Ď? and off-resonance R1Ď? RD experiments. We validate these experiments by studying the unfolding transition of a 7.5Â*kDa cold...
nmrlearner Journal club 0 10-01-2020 11:37 AM
[NMR paper] Resolving biomolecular motion and interactions by R2 and R1? Relaxation Dispersion NMR.
Resolving biomolecular motion and interactions by R2 and R1? Relaxation Dispersion NMR. Related Articles Resolving biomolecular motion and interactions by R2 and R1? Relaxation Dispersion NMR. Methods. 2018 Apr 25;: Authors: Walinda E, Morimoto D, Sugase K Abstract Among the tools of structural biology, NMR spectroscopy is unique in that it not only derives a static three-dimensional structure, but also provides an atomic-level description of the local fluctuations and global dynamics around this static structure. A battery of...
nmrlearner Journal club 0 05-01-2018 10:20 AM
[NMR paper] Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction.
Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction. Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction. J Biomol NMR. 2016 Sep 28; Authors: Seginer A, Olsen GL, Frydman L Abstract Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the -...
nmrlearner Journal club 0 09-30-2016 10:11 AM
Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction
Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction Abstract Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the \({\hbox {F}_{1}}\) â?? \(t_{2}\) ...
nmrlearner Journal club 0 09-29-2016 06:58 AM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. J Phys Chem B. 2014 Oct 28; Authors: Allnér O, Foloppe N, Nilsson L Abstract Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner Journal club 0 10-29-2014 03:51 PM
Correction for Li et al., Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion [Correction]
Correction for Li et al., Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion ... Date: 2013-11-26 BIOPHYSICS AND COMPUTATIONAL BIOLOGY Correction for “Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion,” by Ying Li, Nicole L. Altorelli, Fabiana Bahna, Barry Honig, Lawrence Shapiro, and Arthur G. Palmer III, which appeared in issue 41, October 8, 2013, of Proc Natl Acad Sci USA (110:16462–16467; first published September... Read More PNAS: Number: 48
nmrlearner Journal club 0 11-27-2013 01:50 AM
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments.
Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments. Can Enzyme Engineering Benefit from the Modulation of Protein Motions? Lessons Learned from NMR Relaxation Dispersion Experiments. Protein Pept Lett. 2011 Jan 11; Authors: Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed...
nmrlearner Journal club 0 01-13-2011 12:00 PM
Suite of Six NMR Relaxation Dispersion Experiments to Study Multiple-Site Exchange in Proteins
http://pubs.acs.org/isubscribe/journals/jacsat/127/i44/figures/ja054550en00001.gif Multiple-Site Exchange in Proteins Studied with a Suite of Six NMR Relaxation Dispersion Experiments: An Application to the Folding of a Fyn SH3 Domain Mutant Dmitry M. Korzhnev, Philipp Neudecker, Anthony Mittermaier, Vladislav Yu. Orekhov, and Lewis E. Kay* Contribution from the Departments of Medical Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada, and Swedish NMR Center at Göteborg University, Box 465, 405 30 Göteborg, Sweden J. Am. Chem....
nmrlearner Journal club 0 01-12-2006 08:33 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:52 PM.


Map