BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-12-2017, 02:13 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Correction to: NMR structure of the HIV-1 reverse transcriptase thumb subdomain

Correction to: NMR structure of the HIV-1 reverse transcriptase thumb subdomain

Abstract

In the original publication of the article, the given name and family name of the author P. Andrew Karplus was published incorrectly. The name should read as "P. Andrew" â?? Given name and "Karplus" â?? Family name.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR structure of the HIV-1 reverse transcriptase thumb subdomain.
NMR structure of the HIV-1 reverse transcriptase thumb subdomain. Related Articles NMR structure of the HIV-1 reverse transcriptase thumb subdomain. J Biomol NMR. 2016 Nov 17; Authors: Sharaf NG, Brereton AE, Byeon IL, Andrew Karplus P, Gronenborn AM Abstract The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT)*has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme...
nmrlearner Journal club 0 11-20-2016 09:20 PM
NMR structure of the HIV-1 reverse transcriptase thumb subdomain
NMR structure of the HIV-1 reverse transcriptase thumb subdomain Abstract The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT)Â*has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop...
nmrlearner Journal club 0 11-19-2016 08:35 PM
[NMR paper] NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities.
NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities. Sci Rep. 2015;5:15806 ...
nmrlearner Journal club 0 09-24-2016 05:20 PM
[NMR paper] Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study.
Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study. Related Articles Conformational plasticity of the NNRTI-binding pocket in HIV-1 reverse transcriptase - A fluorine NMR study. Biochemistry. 2016 May 10; Authors: Sharaf NG, Ishima R, Gronenborn AM Abstract HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket,...
nmrlearner Journal club 0 05-11-2016 08:04 PM
[NMR paper] Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase.
Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase. Related Articles Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase. ChemMedChem. 2016 Jan 25; Authors: Seetaha S, Yagi-Utsumi M, Yamaguchi T, Ishii K, Hannongbua S, Choowongkomon K, Kato K Abstract Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques can provide long-range structural information...
nmrlearner Journal club 0 01-26-2016 03:40 PM
[NMR paper] NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase.
NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase. Related Articles NMR assignments of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase. Biomol NMR Assign. 2015 Dec 31; Authors: Polshakov VI, Petrova OA, Parfenova YY, Efimov SV, Klochkov VV, Zvereva MI, Dontsova OA Abstract Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA fragments to the ends of chromosomes. This enzyme is the focus of substantial attention, both because its structure and...
nmrlearner Journal club 0 01-03-2016 01:25 AM
Correction for Li et al., Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion [Correction]
Correction for Li et al., Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion ... Date: 2013-11-26 BIOPHYSICS AND COMPUTATIONAL BIOLOGY Correction for “Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion,” by Ying Li, Nicole L. Altorelli, Fabiana Bahna, Barry Honig, Lawrence Shapiro, and Arthur G. Palmer III, which appeared in issue 41, October 8, 2013, of Proc Natl Acad Sci USA (110:16462–16467; first published September... Read More PNAS: Number: 48
nmrlearner Journal club 0 11-27-2013 01:50 AM
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution
Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution Abstract Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each...
nmrlearner Journal club 0 06-06-2011 12:53 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:11 AM.


Map