BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-25-2018, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformationally locked lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic resonance spectroscopy

Conformationally locked lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic resonance spectroscopy

Abstract

Pseudocontact shifts (PCS) generated by lanthanide chelating tags yield valuable restraints for investigating protein structures, dynamics and interactions in solution. In this work, dysprosium-, thulium- and terbium-complexes of eight-fold methylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid tags [DOTA-M8-(4R4S)-SSPy] are presented that induce large pseudocontact shifts up to 5.5Ā*ppm and adopt exclusively the square antiprismatic conformation. This is in contrast to our earlier findings on complexes of the stereoisomeric DOTA-M8-(8S)-SSPy, where significant amounts of the twisted square antiprismatic conformer for the Dy tag were observed. The Dy-, Tm-, Tb- and Lu-complexes of DOTA-M8-(4R4S)-SSPy were conjugated to ubiquitin S57C and selectively 15N leucine labeled human carbonic anhydrase II S50C, resulting in only one set of signals. Furthermore, we investigated the conformation of the thulium- and dysprosium-complexes in vacuo and with implicit water solvent using density functional theory calculations. The calculated energy differences between the two different conformations (7.0ā??50.5Ā*kJ/mol) and experimental evidence from the corresponding ytterbium- and yttrium-complexes clearly suggest a SAP [Ī?(Ī“Ī“Ī“Ī“)] geometry for the complexes presented in this study. The lanthanide chelating tag studied in this work offer insights into the solution structure of proteins by inducing strong pseudocontact shifts, show different tensor properties compared to its predecessor, enables a convenient assignment procedure, is accessed by a more economic synthesis than its predecessor and constitutes a highly promising starting point for further developments of lanthanide chelating tags.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy.
Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci. 2015 Apr 01;6(4):2614-2624 Authors: Lee MD, Loh CT, Shin J, Chhabra S, Dennis ML, Otting G, Swarbrick JD, Graham B Abstract The design, synthesis and evaluation of four novel lanthanide-binding tags for paramagnetic NMR spectroscopy are reported. Each tag is based on the...
nmrlearner Journal club 0 03-23-2018 11:18 AM
Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites
Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites Abstract Pseudocontact shifts (PCS) encode long-range information on 3D structures of protein backbones and side-chains. The level of structural detail that can be obtained increases with the number of different sites tagged with a paramagnetic metal ion to generate PCSs. Here we show that PCSs from two different sites can suffice to determine the structure of polypeptide chains and their location and orientation relative to the magnetic...
nmrlearner Journal club 0 04-24-2017 01:14 AM
A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions
A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions Abstract The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great...
nmrlearner Journal club 0 11-19-2016 08:35 PM
[NMR paper] Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy.
Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Related Articles Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Chem Commun (Camb). 2016 Jun 2; Authors: Lee MD, Dennis ML, Swarbrick JD, Graham B Abstract Two-armed lanthanide-binding tags induce significant, long-range paramagnetic effects in the NMR spectra of attached proteins. An enantiomeric pair of rigid, two-armed, cyclen-based tags are reported that...
nmrlearner Journal club 0 06-03-2016 04:52 PM
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags Abstract Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Ī?Ļ?) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative...
nmrlearner Journal club 0 11-23-2015 06:58 PM
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe Wei-Min Liu, Peter H. J. Keizers, Mathias A. S. Hass, Anneloes Blok, Monika Timmer, Alexi J. C. Sarris, Mark Overhand and Marcellus Ubbink http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja307824e/aop/images/medium/ja-2012-07824e_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja307824e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NuKda-fEQQ4
nmrlearner Journal club 0 10-10-2012 03:14 PM
Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based proteinā??protein complex structure determination
Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based proteinā??protein complex structure determination Abstract Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of proteinā??protein and proteinā??ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide ...
nmrlearner Journal club 0 04-12-2012 06:12 AM
4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy.
4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. 4,4'-Dithiobis-dipicolinic Acid: A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. Chemistry. 2011 May 3; Authors: Jia X, Maleckis A, Huber T, Otting G Pseudocontact shifts (PCS) from paramagnetic lanthanide ions present powerful long-range structure restraints for studies of proteins by nuclear magnetic resonance spectroscopy. To elicit PCSs, the lanthanide must be attached site-specifically to the target protein....
nmrlearner Journal club 0 05-06-2011 02:00 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:49 PM.


Map