BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 11:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 21,487
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformational analysis by NMR and distance geometry techniques of a peptide mimetic

Conformational analysis by NMR and distance geometry techniques of a peptide mimetic of the third helix of the Antennapedia homeodomain.

Related Articles Conformational analysis by NMR and distance geometry techniques of a peptide mimetic of the third helix of the Antennapedia homeodomain.

J Pept Res. 2005 Feb;65(2):200-8

Authors: Saviano M, Isernia C, Bassarello C, Di Lello P, Galdiero S, Mierke DF, Benedetti E, Pedone C

The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.

PMID: 15705164 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα??C?/HN??N cross-correlated relaxation
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα??C?/HN??N cross-correlated relaxation Abstract Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein HiN??Ni and Ci??1α??Ci??1? dipoles, are demonstrated with an error of 0.03 s??1 for GB3. Because the projection angles between the two dipole vectors are very close to the magic angle the rates range only from ??0.2 to +0.2 s??1. Small changes of the average vector orientations have a dramatic impact on the relative values....
nmrlearner Journal club 0 06-06-2011 12:53 AM
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation.
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation. How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation. J Biomol NMR. 2011 Jun 3; Authors: Vgeli B Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein H (i) (N) -N(i) and C (i-1) (?) -C(i-1)' dipoles, are demonstrated with an error of 0.03*s(-1) for GB3. Because the projection angles...
nmrlearner Journal club 0 06-04-2011 11:26 AM
Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions.
Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions. Transferred NOESY NMR studies of biotin mimetic peptide (FSHPQNT) bound to streptavidin: A structural model for studies of peptide-protein interactions. Chem Biol Drug Des. 2011 Feb 5; Authors: Gizachew D, Dratz E Protein-protein interactions control signaling, specific adhesion and many other biological functions. The three dimensional structures of the interfaces and bound ligand can be...
nmrlearner Journal club 0 02-08-2011 06:28 PM
[NMR paper] Conformational analysis of peptide analogues of silkmoth chorion protein segments usi
Conformational analysis of peptide analogues of silkmoth chorion protein segments using CD, NMR and molecular modelling. Related Articles Conformational analysis of peptide analogues of silkmoth chorion protein segments using CD, NMR and molecular modelling. J Pept Sci. 2004 Jun;10(6):381-92 Authors: Benaki DC, Mikros E, Hamodrakas SJ Silkmoth proteins secreted from the follicular cells that surround the oocyte form a large extracellular assembly which is important for protecting and sustaining the structure of the oocyte and the developing...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-s
Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR. Related Articles Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR. J Am Chem Soc. 2004 Apr 7;126(13):4199-210 Authors: Yao XL, Hong M Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C-H and C-N distances...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Measurement of conformational constraints in an elastin-mimetic protein by residue-pa
Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR. Related Articles Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR. J Biomol NMR. 2002 Feb;22(2):175-9 Authors: Hong M, McMillan RA, Conticello VP We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide.
NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Related Articles NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Biochemistry. 2002 Feb 19;41(7):2149-57 Authors: Johnson MA, Rotondo A, Pinto BM Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed at 800 MHz to investigate the bound conformation of the hexapeptide DRPVPY, a functional molecular mimic of the group A Streptococcus cell-wall polysaccharide. The hexapeptide binds to the monoclonal...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR struc
Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Related Articles Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures. Biopolymers. 1990 Dec;29(14):1807-22 Authors: Kominos D, Bassolino DA, Levy RM, Pardi A The side-chain conformations have been analyzed in the antimicrobial peptide, Neutrophil Peptide-5 (NP-5), whose structure was independently generated from nmr-derived distance constraints using a distance geometry algorithm. The side-chain and peptide...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:40 PM.


Map