BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-06-2018, 01:42 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,793
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Concentration-dependent changes to diffusion and chemical shift of internal standard molecules in aqueous and micellar solutions

Concentration-dependent changes to diffusion and chemical shift of internal standard molecules in aqueous and micellar solutions

Abstract

Sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) is the most widely accepted internal standard for protein NMR studies in aqueous conditions. Since its introduction as a reference standard, however, concerns have been raised surrounding its propensity to interact with biological molecules through electrostatic and hydrophobic interactions. While DSS has been shown to interact with certain proteins, membrane protein studies by solution-state NMR require use of membrane mimetics such as detergent micelles and, to date, no study has explicitly examined the potential for interaction between membrane mimetics and DSS. Consistent with its amphipathic character, we show DSS to self-associate at elevated concentrations using pulsed field gradient-based diffusion NMR measurements. More critically, DSS diffusion is significantly attenuated in the presence of either like-charged sodium dodecyl sulfate or zwitterionic dodecylphosphocholine micelles, the two most commonly used detergent-based membrane mimetic systems used in solution-state NMR. Binding to oppositely charged dodecyltrimethylammonium bromide micelles is also highly favourable. DSS-micelle interactions are accompanied by a systematic, concentration- and binding propensity-dependent change in the chemical shift of the DSS reference signal by up to 60*ppb. The alternative reference compound 4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA) exhibits highly similar behaviour, with reversal of the relative magnitude of chemical shift perturbation and proportion bound in comparison to DSS. Both DSS and DSA, thus, interact with micelles, and self-assemble at high concentration. Chemical shift perturbation of and modulation of micellar properties by these molecules has clear implications for their use as reference standards.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Molecular motions and interactions in aqueous solutions of thymosin-4, stabilin CTD and their 1:1 complex, studied by 1H-NMR spectroscopy.
Molecular motions and interactions in aqueous solutions of thymosin-4, stabilin CTD and their 1:1 complex, studied by 1H-NMR spectroscopy. Related Articles Molecular motions and interactions in aqueous solutions of thymosin-4, stabilin CTD and their 1:1 complex, studied by 1H-NMR spectroscopy. Chemphyschem. 2017 Dec 23;: Authors: Bokor M, Tantos , Mszros A, Jenei B, Haminda R, Tompa P, Tompa K Abstract Wide-line 1H NMR measurements were extended and all results were reinterpreted in a thermodynamics based new approach on...
nmrlearner Journal club 0 12-24-2017 06:30 PM
[NMR paper] Quantitative determination and validation of octreotide acetate using (1) H-NMR spectroscopy with internal standard method.
Quantitative determination and validation of octreotide acetate using (1) H-NMR spectroscopy with internal standard method. Related Articles Quantitative determination and validation of octreotide acetate using (1) H-NMR spectroscopy with internal standard method. Magn Reson Chem. 2017 Sep 15;: Authors: Yu C, Zhang Q, Xu PY, Bai Y, Shen WB, Di B, Su MX Abstract Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated (1) H quantitative nuclear magnetic...
nmrlearner Journal club 0 09-19-2017 04:40 PM
Salt-dependent and protein-concentration-dependent changes i
Salt-dependent and protein-concentration-dependent changes i More...
nmrlearner General 0 10-15-2013 09:48 PM
TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions
From The DNP-NMR Blog: TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions Gafurov, M., TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions. Magn. Reson. Solids., 2013. 15: p. 13103. http://mrsej.ksu.ru/contents.html#13103
nmrlearner News from NMR blogs 0 05-03-2013 02:26 PM
[Question from NMRWiki Q&A forum] Concentration-dependent signal fine splitting
Concentration-dependent signal fine splitting Hi, I have synthesized coproporphyrin II tetramethyl ester and taken a 1H NMR in CDCl3: http://illumina-chemie.de/upload/5_11600286385136157fa7971.png Especially the peaks at 10.1 ppm, belonging to the CH groups connecting the pyrrole rings, show a strong concentration dependence. They should be two singlets, but in fact they are only singlets at very low concentrations and split up with increasing concentration:
nmrlearner News from other NMR forums 0 03-06-2013 04:21 AM
[Question from NMRWiki Q&A forum] Are there ways to explain magnetic-field dependent chemical shift?
Are there ways to explain magnetic-field dependent chemical shift? Hi everyone, I was wondering whether anyone could help me to explain why the chemical shifts in my proton and carbon NMR results do not exactly match with those reported in the literature?The solvent used in my experiment is exactly the same as the one used in the literature of reference (CD3OD), however the frequency applied in my experiment was 500MHz as opposed to 400MHz by the study i am comparing my results with. For example, in my proton NMR spectra, my results are usually 0.08 to 0.26 ppm higher than that in...
nmrlearner News from other NMR forums 0 08-05-2012 03:59 PM
NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection.
NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection. NMR structures of the histidine-rich peptide LAH4 in micellar environments: membrane insertion, pH-dependent mode of antimicrobial action, and DNA transfection. Biophys J. 2010 Oct 20;99(8):2507-15 Authors: Georgescu J, Munhoz VH, Bechinger B The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions...
nmrlearner Journal club 0 02-02-2011 02:40 AM
[NMR paper] NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. Related Articles NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J Biomol NMR. 1992 Sep;2(5):447-65 Authors: Liepinsh E, Otting G, Wüthrich K Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the...
nmrlearner Journal club 0 08-21-2010 11:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:23 PM.


Map