BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A comparison of the pH, urea, and temperature-denatured states of barnase by heteronu

A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding.

Related Articles A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding.

J Mol Biol. 1995 Nov 24;254(2):305-21

Authors: Arcus VL, Vuilleumier S, Freund SM, Bycroft M, Fersht AR

The denatured states of barnase that are induced by urea, acid, and high temperature and acid have been assigned and characterised by high resolution heteronuclear NMR. The assignment was completed using a combination of triple-resonance and magnetisation-transfer methods. The latter was facilitated by selecting a suitable mutant of barnase (Ile-->Val51) which has an appropriate rate of interconversion between native and denatured states in urea. 3J NH-C alpha H coupling constants were determined for pH and urea-denatured barnase and intrinsic "random coil" coupling constants are shown to be different for different residue types. All the denatured states are highly unfolded. But, a consistent series of weak correlations in chemical shift, NOESY and coupling constant data provides evidence that the acid-denatured state has some residual structure in regions that form the first and second helices and the central strands of beta-sheet in the native protein. The acid/temperature-denatured states has less structure in these regions, and the urea-denatured state, less still. These observations may be combined with detailed analyses of the folding pathway of barnase from kinetic studies to illuminate the relevance of residual structure in the denatured states of proteins to the mechanism of protein folding. First, the folding of barnase is known to proceed in its later stages through structures in which the first helix and centre of the beta-sheet are extensively formed. Thus, embryonic initiation sites for these do exist in the denatured states and so could well develop into true nuclei. Second, it has been clearly established that the second helix is unfolded in these later states, and so residual structure in this region of the protein is non-productive. These data fit a model of protein folding in which local nucleation sites are latent in the denatured state and develop only when they make interactions elsewhere in the protein that stabilise them during the folding process. Thus, studies of the structure of denatured states pinpoint where nucleation sites may be, and the kinetic and protein engineering studies show which ones are productive.

PMID: 7490750 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy. Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy. J Biomol NMR. 2011 Mar 18; Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner Journal club 0 03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...
nmrlearner Journal club 0 03-22-2011 07:32 PM
[NMR paper] Hydrogen exchange properties of proteins in native and denatured states monitored by
Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997 Jun;6(6):1316-24 Authors: Chung EW,...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Hydrogen exchange properties of proteins in native and denatured states monitored by
Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci. 1997 Jun;6(6):1316-24 Authors: Chung EW,...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The methanol-induced globular and expanded denatured states of cytochrome c: a study
The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol. 1996 Jun 14;259(3):512-23 Authors: Kamatari YO, Konno T, Kataoka M, Akasaka K Methanol-induced conformational transitions of...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Structural and dynamic characterization of the urea denatured state of the immunoglob
Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR determination of residual structure in a urea-denatured protein, the 434-represso
NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Related Articles NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559-63 Authors: Neri D, Billeter M, Wider G, Wüthrich K A nuclear magnetic resonance (NMR) structure determination is reported for the polypeptide chain of a globular protein in strongly denaturing solution. Nuclear Overhauser effect (NOE) measurements with a 7 molar urea solution of the amino-terminal 63-residue domain...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium e
Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. FEBS Lett. 1999 Feb 26;445(2-3):361-5 Authors: Jonasson P, Kjellsson A, Sethson I, Jonsson BH Hydrogen/deuterium (H/D) exchange measurements in low and moderate...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:14 AM.


Map