BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-20-2013, 10:08 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Application of Reductive 13C-Methylation of Lysines to Enhance the Sensitivity of Conventional NMR Methods.

Application of Reductive 13C-Methylation of Lysines to Enhance the Sensitivity of Conventional NMR Methods.

Application of Reductive 13C-Methylation of Lysines to Enhance the Sensitivity of Conventional NMR Methods.

Molecules. 2013;18(6):7103-19

Authors: Chavan TS, Abraham S, Gaponenko V

Abstract
NMR is commonly used to investigate macromolecular interactions. However, sensitivity problems hamper its use for studying such interactions at low physiologically relevant concentrations. At high concentrations, proteins or peptides tend to aggregate. In order to overcome this problem, we make use of reductive 13C-methylation to study protein interactions at low micromolar concentrations. Methyl groups in dimethyl lysines are degenerate with one 13CH3 signal arising from two carbons and six protons, as compared to one carbon and three protons in aliphatic amino acids. The improved sensitivity allows us to study protein-protein or protein-peptide interactions at very low micromolar concentrations. We demonstrate the utility of this method by studying the interaction between the post-translationally lipidated hypervariable region of a human proto-oncogenic GTPase K-Ras and a calcium sensor protein calmodulin. Calmodulin specifically binds K-Ras and modulates its downstream signaling. This binding specificity is attributed to the unique lipidated hypervariable region of K-Ras. At low micromolar concentrations, the post-translationally modified hypervariable region of K-Ras aggregates and binds calmodulin in a non-specific manner, hence conventional NMR techniques cannot be used for studying this interaction, however, upon reductively methylating the lysines of calmodulin, we detected signals of the lipidated hypervariable region of K-Ras at physiologically relevant nanomolar concentrations. Thus, we utilize 13C-reductive methylation of lysines to enhance the sensitivity of conventional NMR methods for studying protein interactions at low concentrations.


PMID: 23778120 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR June 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 219</br> </br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional manner by the...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Lysine methylation strategies for characterizing protein conformations by NMR
Lysine methylation strategies for characterizing protein conformations by NMR Abstract In the presence of formaldehyde and a mild reducing agent, reductive methylation is known to achieve near complete dimethylation of protein amino groups under non-denaturing conditions, in aqueous media. Amino methylation of proteins is employed in mass spectrometric, crystallographic, and NMR studies. Where biosynthetic labeling is prohibitive, amino 13C-methylation provides an attractive option for monitoring folding, kinetics, proteinā??protein and protein-DNA interactions by NMR. Here, we...
nmrlearner Journal club 0 09-10-2012 01:48 AM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR Publication year: 2012 Source:Journal of Magnetic Resonance</br> Christopher A. Waudby, John Christodoulou</br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional...
nmrlearner Journal club 0 05-01-2012 08:03 PM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner Journal club 0 10-21-2011 10:04 PM
[NMR paper] Application of NMR methods to identify detection reagents for use in development of r
Application of NMR methods to identify detection reagents for use in development of robust nanosensors. Related Articles Application of NMR methods to identify detection reagents for use in development of robust nanosensors. Methods Mol Biol. 2005;300:141-63 Authors: Cosman M, Krishnan VV, Balhorn R Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying bimolecular interactions at the atomic scale. Our NMR laboratory is involved in the identification of small molecules, or ligands, that bind to target protein...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Characterization by NMR of the heme-myoglobin adduct formed during the reductive meta
Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. Related Articles Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. J Biol Chem. 1991 Feb 15;266(5):3208-14 Authors: Osawa Y, Highet RJ, Bax A, Pohl LR The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] 13C-NMR of Clostridium pasteurianum ferredoxin after reductive methylation of the ami
13C-NMR of Clostridium pasteurianum ferredoxin after reductive methylation of the amines using formaldehyde. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 13C-NMR of Clostridium pasteurianum ferredoxin after reductive methylation of the amines using formaldehyde. Biochim Biophys Acta. 1990 Apr 19;1038(2):146-51 Authors: Gluck M, Sweeney WV Clostridium pasteurianum 2(4Fe-4S) ferredoxin has been reductively methylated using formaldehyde and sodium cyanoborohydride....
nmrlearner Journal club 0 08-21-2010 10:48 PM
[U. of Ottawa NMR Facility Blog] CPMG to Enhance Sharp Lines
CPMG to Enhance Sharp Lines The Carr - Purcell - Meiboom - Gill (CPMG) sequence is used to measure T2 relaxation times and more recently has made an impact in measuring the line shapes of very broad solid lines by breaking them up into spikelet patterns which mimic the static line shape. The very simple pulse sequence is shown here:http://3.bp.blogspot.com/_5wBTR2kKTqA/S2xdSaQ7iPI/AAAAAAAAAt0/kg9wRg8ccoY/s400/cpmg2.jpgDuring the (D2 - ? -D2)n period the intensity of lines with short T2 (broad lines) diminishes much more quickly than that for lines with long T2 (sharp lines). The CPMG...
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:32 AM.


Map