BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-09-2017, 08:55 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Proteinâ??nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR

Proteinâ??nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR

Abstract

DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect proteinâ??DNA and proteinâ??ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect proteinâ??DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31Pâ??13C polarization-transfer experiments followed by the recording of a 2D 13Câ??13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins.
Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif Related Articles Limits of Resolution and Sensitivity of Proton Detected MAS Solid-State NMR Experiments at 111 kHz in Deuterated and Protonated Proteins. Sci Rep. 2017 Aug 07;7(1):7444 Authors: Xue K, Sarkar R, Motz C, Asami S, Camargo DCR, Decker V, Wegner S, Tosner Z, Reif B Abstract MAS...
nmrlearner Journal club 0 08-10-2017 12:13 AM
[NMR paper] Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods.
Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs. Solution-State Methods. J Phys Chem B. 2017 Jul 24;: Authors: Lakomek NA, Frey L, Bibow S, Böckmann A, Riek R, Meier BH Abstract The structural and dynamical characterization of membrane proteins...
nmrlearner Journal club 0 07-25-2017 07:46 PM
[NMR paper] Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy.
Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy. Probing the Conformationally Excited States of Membrane Proteins via (1)H-detected MAS Solid-State NMR Spectroscopy. J Phys Chem B. 2017 Apr 13;: Authors: Gopinath T, Nelson SE, Soller KJ, Veglia G Abstract Proteins exist in ensembles of conformational states that interconvert on various motional time scales. High-energy states of proteins, often referred to as conformationally excited states, are sparsely...
nmrlearner Journal club 0 04-14-2017 10:27 AM
[NMR paper] (1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ.
(1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ. Related Articles (1) H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In Vitro and In Situ. Angew Chem Int Ed Engl. 2016 Sep 27; Authors: Medeiros-Silva J, Mance D, Daniëls M, Jekhmane S, Houben K, Baldus M, Weingarth M Abstract (1) H detection can significantly improve solid-state NMR spectral sensitivity and thereby allows studying more complex proteins. However, the common prerequisite for (1) H detection is the...
nmrlearner Journal club 0 09-28-2016 06:22 PM
[NMR paper] (1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization.
(1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif Related Articles (1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. Sci Rep. 2016;6:27851 Authors: Ravera E, Cerofolini L, Martelli T, Louka A, Fragai M, Luchinat C Abstract Proton-detection in solid-state NMR, enabled by high magnetic...
nmrlearner Journal club 0 06-10-2016 10:49 PM
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner Journal club 0 09-20-2012 06:06 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 20; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 14; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-16-2011 12:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:11 AM.


Map