BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-11-2016, 08:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics.

Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics.

Related Articles Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics.

BMC Microbiol. 2016;16(1):82

Authors: Hoerr V, Duggan GE, Zbytnuik L, Poon KK, Große C, Neugebauer U, Methling K, Löffler B, Vogel HJ

Abstract
BACKGROUND: The emergence of antibiotic resistant pathogenic bacteria has reduced our ability to combat infectious diseases. At the same time the numbers of new antibiotics reaching the market have decreased. This situation has created an urgent need to discover novel antibiotic scaffolds. Recently, the application of pattern recognition techniques to identify molecular fingerprints in 'omics' studies, has emerged as an important tool in biomedical research and laboratory medicine to identify pathogens, to monitor therapeutic treatments or to develop drugs with improved metabolic stability, toxicological profile and efficacy. Here, we hypothesize that a combination of metabolic intracellular fingerprints and extracellular footprints would provide a more comprehensive picture about the mechanism of action of novel antibiotics in drug discovery programs.
RESULTS: In an attempt to integrate the metabolomics approach as a classification tool in the drug discovery processes, we have used quantitative (1)H NMR spectroscopy to study the metabolic response of Escherichia coli cultures to different antibiotics. Within the frame of our study the effects of five different and well-known antibiotic classes on the bacterial metabolome were investigated both by intracellular fingerprint and extracellular footprint analysis. The metabolic fingerprints and footprints of bacterial cultures were affected in a distinct manner and provided complementary information regarding intracellular and extracellular targets such as protein synthesis, DNA and cell wall. While cell cultures affected by antibiotics that act on intracellular targets showed class-specific fingerprints, the metabolic footprints differed significantly only when antibiotics that target the cell wall were applied. In addition, using a training set of E. coli fingerprints extracted after treatment with different antibiotic classes, the mode of action of streptomycin, tetracycline and carbenicillin could be correctly predicted.
CONCLUSION: The metabolic profiles of E. coli treated with antibiotics with intracellular and extracellular targets could be separated in fingerprint and footprint analysis, respectively and provided complementary information. Based on the specific fingerprints obtained for different classes of antibiotics, the mode of action of several antibiotics could be predicted. The same classification approach should be applicable to studies of other pathogenic bacteria.


PMID: 27159970 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Scientists discover exactly how superbugs build up resistance to antibiotics - Daily Mail
http://www.bionmr.com//t3.gstatic.com/images?q=tbn:ANd9GcSS9XxebHtKAoq5eBuQuMrkVB7UTWex0_QHJsbLSes4nOuDgpViGjS86lKdESWuqthvPleBQ3Y Daily Mail <img alt="" height="1" width="1"> Scientists discover exactly how superbugs build up resistance to antibiotics Daily Mail A recent £17 million investment in some of the best nuclear magnetic resonance and electron microscopy facilities in the world is now enabling scientists to remain at the forefront of research into complex proteins. A new academic symposium, the ... Unravelling the secret of antibiotic resistancePhys.Org all 7 news articles...
nmrlearner Online News 0 03-23-2016 03:42 AM
Mechanism of the Flavoprotein l-HydroxynicotineOxidase: Kinetic Mechanism, Substrate Specificity, Reaction Product,and Roles of Active-Site Residues
Mechanism of the Flavoprotein l-HydroxynicotineOxidase: Kinetic Mechanism, Substrate Specificity, Reaction Product,and Roles of Active-Site Residues http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.5b01325/20160115/images/medium/bi-2015-01325p_0010.gif Biochemistry DOI: 10.1021/acs.biochem.5b01325 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/dRyDnVshmpk More...
nmrlearner Journal club 0 01-16-2016 04:41 AM
[NMR paper] Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR.
Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Biophys J. 2015 Mar 24;108(6):1380-9 Authors: Nygaard R, Romaniuk JA, Rice DM, Cegelski L Abstract Gram-positive bacteria surround themselves with a thick cell wall that is essential to cell survival and is a major target of antibiotics. Quantifying alterations in cell-wall composition are crucial to evaluating drug...
nmrlearner Journal club 0 03-27-2015 11:59 PM
[NMR paper] Investigation of the mechanism of action of novel amphipathic peptides: Insights from solid-state NMR studies of oriented lipid bilayers.
Investigation of the mechanism of action of novel amphipathic peptides: Insights from solid-state NMR studies of oriented lipid bilayers. Related Articles Investigation of the mechanism of action of novel amphipathic peptides: Insights from solid-state NMR studies of oriented lipid bilayers. Biochim Biophys Acta. 2014 Feb 6; Authors: Fillion M, Noël M, Lorin A, Voyer N, Auger M Abstract We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers...
nmrlearner Journal club 0 02-11-2014 09:58 PM
Filming proteins in action - ETH Life
http://nt3.ggpht.com/news/tbn/82lh87cxgc6k5M/6.jpg ETH Life <img alt="" height="1" width="1" /> Filming proteins in action ETH Life Roland Riek is a professor of physical chemistry and heads the Bio-Nuclear Magnetic Resonance Group at ETH Zurich's Laboratory of Physical Chemistry. He studied physics at ETH Zurich and did his PhD thesis under Professor Kurt Wüthrich at the Institute ... Filming proteins in action - ETH Life
nmrlearner Online News 0 12-14-2011 06:42 AM
[NMR paper] Solution conformation of methylated macrolide antibiotics roxithromycin and erythromy
Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling. Ribosome-bound conformation determined by TRNOE and formation of cytochrome P450-metabolite complex. Related Articles Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling. Ribosome-bound conformation determined by TRNOE and formation of cytochrome P450-metabolite complex. Int J Biol Macromol. 1998 Apr;22(2):103-27 Authors: Bertho G, Ladam P, Gharbi-Benarous J,...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR tweet] Got to see the nuclear magnetic resonance machine in action today. It's a big drum, i
Got to see the nuclear magnetic resonance machine in action today. It&apos;s a big drum, it makes noises and eats tubes. Published by LilithFhynix (Lilith Fhynix) on 2010-10-06T21:27:16Z Source: Twitter
nmrlearner Twitter NMR 0 10-06-2010 09:44 PM
Structural biology: Molecular machinery in action
News and Views Nature 445, 609 (8 February 2007) | <abbr title="Digital Object Identifier">doi</abbr>:10.1038/nature05566; Published online 21 January 2007 Structural biology: Molecular machinery in action Ad Bax and Dennis A. Torchia Abstract
sivanmr Journal club 0 02-21-2007 04:52 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:26 AM.


Map