BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization of the monomeric form of the transmembrane and cytoplasmic domains o

Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy.

Related Articles Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy.

Biochemistry. 2002 Dec 31;41(52):15618-24

Authors: Li R, Babu CR, Valentine K, Lear JD, Wand AJ, Bennett JS, DeGrado WF

We have characterized a membrane protein containing residues P688-T762 of the integrin beta3 subunit, encompassing its transmembrane and cytoplasmic domains, by nuclear magnetic resonance spectroscopy. Under conditions in which it is monomeric in dodecylphosphocholine micelles, the protein consists mainly of alpha-helical structures. An amino-terminal helix corresponding to the beta3 transmembrane helix extends into the membrane-proximal region of the cytoplasmic domain. Moreover, following an apparent hinge at residues H722-D723, residues K725-A735 are mostly alpha-helical. In the presence of membrane-mimicking detergents, the cytoplasmic domain connected to the transmembrane helix is substantially ordered at pH 4.8 and 50 degrees C. Its carboxyl-terminal end takes on a turn-helix configuration characteristic of the immunoreceptor tyrosine-based activation motif. These structural features of the beta3 subunit should help to explain its interaction with numerous cytosolic interacting proteins and begin to illuminate the mechanism of integrin activation.

PMID: 12501190 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies.
Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies. Protein Expr Purif. 2011 Feb 11; Authors: Wang X, Gill Jr RL, Zhu Q, Tian F LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player...
nmrlearner Journal club 0 02-16-2011 07:40 PM
[NMR paper] NMR solution structure of the monomeric form of the bacteriophage lambda capsid stabi
NMR solution structure of the monomeric form of the bacteriophage lambda capsid stabilizing protein gpD. Related Articles NMR solution structure of the monomeric form of the bacteriophage lambda capsid stabilizing protein gpD. J Biomol NMR. 2005 Apr;31(4):351-6 Authors: Iwai H, Forrer P, Plückthun A, Güntert P
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupl
NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. Related Articles NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. J Biol Chem. 2005 Feb 4;280(5):3605-12 Authors: Xie XQ, Chen JZ The fourth cytoplasmic domain, the so-called C-terminal juxtamembrane segment or helix VIII, has been identified in numerous G-protein-coupled...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge
Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate. Related Articles Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate. J Biol Chem. 2002 Apr 5;277(14):12375-81 Authors: Odaert B, Landrieu I, Dijkstra K, Schuurman-Wolters G, Casteels P, Wieruszeski JM, Inze D, Scheek R, Lippens G Cyclin-dependent kinase subunit (CKS) proteins bind to cyclin-dependent...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Investigating the conformational coupling between the transmembrane and cytoplasmic d
Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study. Related Articles Investigating the conformational coupling between the transmembrane and cytoplasmic domains of a single-spanning membrane protein. A 1H-NMR study. FEBS Lett. 2001 Sep 21;505(3):431-5 Authors: Mousson F, Beswick V, Coïc YM, Huynh-Dinh T, Sanson A, Neumann JM PMP1 is a 38-residue single-spanning membrane protein whose C-terminal cytoplasmic domain, Y25-F38, is highly positively...
nmrlearner Journal club 0 11-19-2010 08:44 PM
NMR Characterization of Copper-Binding Domains 4-6 of ATP7B,
NMR Characterization of Copper-Binding Domains 4-6 of ATP7B, http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi1008535/aop/images/medium/bi-2010-008535_0002.gif Biochemistry DOI: 10.1021/bi1008535 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/5w8PZPbbOyQ More...
nmrlearner Journal club 0 09-11-2010 01:25 AM
NMR Characterization of Copper-binding Domains 4-6 of ATP7B.
NMR Characterization of Copper-binding Domains 4-6 of ATP7B. Related Articles NMR Characterization of Copper-binding Domains 4-6 of ATP7B. Biochemistry. 2010 Aug 27; Authors: Fatemi N, Korzhnev DM, VÄ?lyvis A, Sarkar B, Forman-Kay JD The Wilson disease protein (ATP7B) is a copper-transporting member of the P-type ATPase superfamily, which plays a central role in copper homeostasis and interacts with the copper chaperone Atox1. The N-terminus of ATP7B is comprised of six copper-binding domains (WCBDs), each capable of binding one copper atom in the...
nmrlearner Journal club 0 08-31-2010 09:42 PM
NMR characterization of foldedness for the production of E3 RING domains.
NMR characterization of foldedness for the production of E3 RING domains. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR characterization of foldedness for the production of E3 RING domains. J Struct Biol. 2010 Aug 2; Authors: Huang A, de Jong RN, Folkers GE, Boelens R We summarize the use of NMR spectroscopy in the production and the screening of stability and foldedness of protein domains, and apply it to the RING domains of E3 ubiquitin-ligases. RING domains...
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:57 AM.


Map