BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterization of the EGF-like module pair 3-4 from vitamin K-dependent protein S u

Characterization of the EGF-like module pair 3-4 from vitamin K-dependent protein S using NMR spectroscopy reveals dynamics on three separate time scales and extensive effects from calcium binding.

Related Articles Characterization of the EGF-like module pair 3-4 from vitamin K-dependent protein S using NMR spectroscopy reveals dynamics on three separate time scales and extensive effects from calcium binding.

Biochemistry. 2000 Dec 26;39(51):15742-56

Authors: Muranyi A, Evenäs J, Stenberg Y, Stenflo J, Drakenberg T

Protein S, a cofactor of anticoagulant activated protein C, exhibits three high-affinity Ca(2+)-binding sites in a region comprising four EGF modules. The EGF 3-4 module pair constitutes the smallest fragment that retains one high-affinity Ca(2+)-binding site and is therefore useful for investigation of the structural basis of the unusually high-affinity Ca(2+) binding compared to other EGF-containing proteins characterized so far. Extensive chemical shift effects caused by Ca(2+) binding to the EGF 3-4 module pair are observed, particularly from Ca(2+) binding to the high-affinity site in EGF 4. Ca(2+) binding to the high-affinity site in EGF 4 and the low-affinity site in EGF 3 is associated with slow and fast exchange on the NMR time-scale, respectively. We show the presence of two isoforms, characterized by a cis or trans Lys 167-Pro 168 peptide bond, that do not convert on time scales that were accessible to the experiments (k(ex) < 0.2 s(-1)). Both conformers have similar Ca(2+) affinities and backbone dynamics. Further, broadening of (1)H resonances involving residues in the major beta-sheet of EGF 3 and (15)N exchange terms, primarily in the N-terminal part of the protein, indicate the presence of slow exchange on a microsecond to millisecond time scale. (15)N spin relaxation data suggest that the module pair has a well-defined relative orientation between EGF modules 3 and 4 and has a significantly anisotropic rotational diffusion tensor in solution.

PMID: 11123899 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Metabolic profiling of vitamin C deficiency in Guloâ??/â?? mice using proton NMR spectroscopy
Metabolic profiling of vitamin C deficiency in Guloâ??/â?? mice using proton NMR spectroscopy Abstract Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary...
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Characterization of the carboxylate delivery module of transcarboxylase: following sp
Characterization of the carboxylate delivery module of transcarboxylase: following spontaneous decarboxylation of the 1.3S-CO2- subunit by NMR and FTIR spectroscopies. Related Articles Characterization of the carboxylate delivery module of transcarboxylase: following spontaneous decarboxylation of the 1.3S-CO2- subunit by NMR and FTIR spectroscopies. Biochemistry. 2002 Feb 19;41(7):2191-7 Authors: Rivera-Hainaj RE, Pusztai-Carey M, Venkat Reddy D, Choowongkomon K, Sönnichsen FD, Carey PR Transcarboxylase (TC) is a multisubunit enzyme that...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR characterization of a pH-dependent equilibrium between two folded solution confor
NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Related Articles NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 2000 May;9(5):1038-41 Authors: Damberger F, Nikonova L, Horst R, Peng G, Leal WS, Wüthrich K NMR spectroscopic changes as a function of pH in solutions of the pheromone-binding protein of Bombyx mori (BmPBP) show that BmPBP...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] A mini-protein designed by removing a module from barnase: molecular modeling and NMR
A mini-protein designed by removing a module from barnase: molecular modeling and NMR measurements of the conformation. Related Articles A mini-protein designed by removing a module from barnase: molecular modeling and NMR measurements of the conformation. Protein Eng. 1999 Aug;12(8):673-80 Authors: Takahashi K, Noguti T, Hojo H, Yamauchi K, Kinoshita M, Aimoto S, Ohkubo T, G? M A globular domain can be decomposed into compact modules consisting of contiguous 10-30 amino acid residues. The correlation between modules and exons observed in...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] The NMR solution structure and characterization of pH dependent chemical shifts of th
The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein. Related Articles The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein. J Biomol NMR. 1998 Nov;12(4):523-34 Authors: Gooley PR, Keniry MA, Dimitrov RA, Marsh DE, Keizer DW, Gayler KR, Grant BR The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Bacterial expression and characterization of the CREB bZip module: circular dichroism
Bacterial expression and characterization of the CREB bZip module: circular dichroism and 2D 1H-NMR studies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Bacterial expression and characterization of the CREB bZip module: circular dichroism and 2D 1H-NMR studies. Protein Sci. 1993 Sep;2(9):1461-71 Authors: Santiago-Rivera...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. Eur J Biochem. 1993 Feb 1;211(3):555-62 Authors: Turner DL, Williams RJ The redox-state dependent changes in chemical shift, which have...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Secondary structure of a complement control protein module by two-dimensional 1H NMR.
Secondary structure of a complement control protein module by two-dimensional 1H NMR. Related Articles Secondary structure of a complement control protein module by two-dimensional 1H NMR. Biochemistry. 1991 Jan 29;30(4):997-1004 Authors: Barlow PN, Baron M, Norman DG, Day AJ, Willis AC, Sim RB, Campbell ID The complement control protein (CCP) module (also known as the short consensus repeat) is a consensus sequence of about 60 amino acid residues which is thought to fold independently. It occurs over 140 times in more than 20 extracellular...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:36 PM.


Map