BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-06-2018, 01:42 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,793
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.

In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.

In-Cell NMR in Human Cells: Direct Protein Expression Allows Structural Studies of Protein Folding and Maturation.

Acc Chem Res. 2018 Jun 05;:

Authors: Luchinat E, Banci L

Abstract
Cellular structural biology methods are needed to characterize biological processes at atomic resolution in the physiological environment of the cell. Toward this goal, solution in-cell NMR is a powerful approach because it provides structural and dynamic data on macromolecules inside living cells. Several approaches have been developed for in-cell NMR in cultured human cells, which are needed to study processes related to human diseases that rely on the delivery of exogenous macromolecules to the cells. Such strategies, however, may not be applicable to proteins that are sensitive to the external environment or prone to aggregate and can introduce artifacts during protein purification or delivery. As a complementary approach, direct protein expression for in-cell NMR in human cells was developed. This strategy is especially useful when studying processes like protein folding, maturation, and post-translational modification, starting right after protein synthesis. Compared with the protein expression techniques in mammalian cells commonly used in cellular biology, the low sensitivity of NMR requires higher protein levels. Among the cell lines used for high-yield protein expression, the HEK293T cell line was chosen, as it can be efficiently transfected with a cost-effective reagent. A vector originally designed for secreted proteins allows high-level cytosolic protein expression. For isotopic labeling, commercially available or homemade labeled media are employed. Uniform or amino acid type-selective labeling strategies are possible. Protein expression can be targeted to specific organelles (e.g., mitochondria), allowing for in organello NMR applications. A variant of the approach was developed that allows the sequential expression of two or more proteins, with only one selectively labeled. Protein expression in HEK293T cells was applied to recapitulate the maturation steps of intracellular superoxide dismutase 1 (SOD1) and to study the effect of mutations linked to familial amyotrophic lateral sclerosis (fALS) by in-cell NMR. Intracellular wild-type SOD1 spontaneously binds zinc, while it needs the copper chaperone for superoxide dismutase (CCS) for copper delivery and disulfide bond formation. Some fALS-linked mutations impair zinc binding and cause SOD1 to irreversibly unfold, likely forming the precursor of cytotoxic aggregates. The SOD-like domain of CCS acts as a molecular chaperone toward mutant SOD1, stabilizing its folding and allowing zinc binding and correct maturation. Changes in protein redox state distributions can also be investigated by in-cell NMR. Mitochondrial proteins require the redox-regulating partners glutaredoxin 1 (Grx1) and thioredoxin (Trx) to remain in the reduced, import-competent state in the cytosol, whereas SOD1 requires CCS for disulfide bond formation. In both cases, the proteins do not equilibrate with the cytosolic redox pool. Cysteine oxidation in response to oxidative stress can also be monitored. In the near future, in-cell NMR in human cells will likely benefit from technological advancements in NMR hardware, the development of bioreactor systems for increased sample lifetime, the application of paramagnetic NMR to obtain structural restraints, and advanced tools for genome engineering and should be increasingly integrated with advanced cellular imaging techniques.


PMID: 29869502 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression
Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00488/20160721/images/medium/bi-2016-00488z_0007.gif Biochemistry DOI: 10.1021/acs.biochem.6b00488 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/cYFGIK8-8JE More...
nmrlearner Journal club 0 07-22-2016 01:34 AM
[NMR paper] Sequential protein expression and selective labeling for in-cell NMR in human cells.
Sequential protein expression and selective labeling for in-cell NMR in human cells. Related Articles Sequential protein expression and selective labeling for in-cell NMR in human cells. Biochim Biophys Acta. 2015 Dec 23; Authors: Luchinat E, Secci E, Cencetti F, Bruni P Abstract BACKGROUND: In-cell NMR is a powerful technique to investigate proteins in living human cells at atomic resolution. Ideally, when studying functional processes involving protein-protein interactions by NMR, only one partner should be isotopically...
nmrlearner Journal club 0 01-04-2016 07:49 PM
Sequential protein expression and selective labeling for in-cell NMR in human cells
Sequential protein expression and selective labeling for in-cell NMR in human cells Publication date: Available online 23 December 2015 Source:Biochimica et Biophysica Acta (BBA) - General Subjects</br> Author(s): Enrico Luchinat, Erica Secci, Francesca Cencetti, Paola Bruni</br> Background In-cell NMR is a powerful technique to investigate proteins in living human cells at atomic resolution. Ideally, when studying functional processes involving protein-protein interactions by NMR, only one partner should be isotopically labeled. Here we show that...
nmrlearner Journal club 0 12-28-2015 12:26 AM
[NMR paper] Direct structural evidence of protein redox regulation obtained by in-cell NMR.
Direct structural evidence of protein redox regulation obtained by in-cell NMR. Direct structural evidence of protein redox regulation obtained by in-cell NMR. Biochim Biophys Acta. 2015 Nov 14; Authors: Mercatelli E, Barbieri L, Luchinat E, Banci L Abstract The redox properties of cellular environments are critical to many functional processes, and are strictly controlled in all living organisms. The glutathione-glutathione disulfide (GSH-GSSG) couple is the most abundant intracellular redox couple. A GSH redox potential can be...
nmrlearner Journal club 0 11-22-2015 03:54 PM
Direct structural evidence of protein redox regulation obtained by in-cell NMR
Direct structural evidence of protein redox regulation obtained by in-cell NMR Publication date: Available online 14 November 2015 Source:Biochimica et Biophysica Acta (BBA) - Molecular Cell Research</br> Author(s): Eleonora Mercatelli, Letizia Barbieri, Enrico Luchinat, Lucia Banci</br> The redox properties of cellular environments are critical to many functional processes, and are strictly controlled in all living organisms. The glutathione-glutathione disulfide (GSH-GSSG) couple is the most abundant intracellular redox couple. A GSH redox potential can be...
nmrlearner Journal club 0 11-17-2015 02:57 PM
[NMR paper] NMR studies of protein folding and binding in cells and cell-like environments.
NMR studies of protein folding and binding in cells and cell-like environments. NMR studies of protein folding and binding in cells and cell-like environments. Curr Opin Struct Biol. 2014 Dec 2;30C:7-16 Authors: Smith AE, Zhang Z, Pielak GJ, Li C Abstract Proteins function in cells where the concentration of macromolecules can exceed 300g/L. The ways in which this crowded environment affects the physical properties of proteins remain poorly understood. We summarize recent NMR-based studies of protein folding and binding...
nmrlearner Journal club 0 12-06-2014 05:18 PM
NMR studies of protein folding and binding in cells and cell-like environments
NMR studies of protein folding and binding in cells and cell-like environments Publication date: February 2015 Source:Current Opinion in Structural Biology, Volume 30</br> Author(s): Austin E Smith , Zeting Zhang , Gary J Pielak , Conggang Li</br> Proteins function in cells where the concentration of macromolecules can exceed 300g/L. The ways in which this crowded environment affects the physical properties of proteins remain poorly understood. We summarize recent NMR-based studies of protein folding and binding conducted in cells and in vitro under crowded...
nmrlearner Journal club 0 12-04-2014 04:37 AM
[NMR paper] Atomic-resolution monitoring of protein maturation in live human cells by NMR.
Atomic-resolution monitoring of protein maturation in live human cells by NMR. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol. 2013 Mar 3; Authors: Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR Abstract We use NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for...
nmrlearner Journal club 0 03-05-2013 03:25 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:24 PM.


Map