BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fra

Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.

Related Articles Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.

J Protein Chem. 1993 Dec;12(6):695-707

Authors: Huque ME, Vogel HJ

The pH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C (1-75) and TR2C (78-148) were dimethylated with carbon-13 labeled formaldehyde; this modification did not alter the protein's structure or its ability to activate the enzyme cyclic nucleotide phosphodiesterase. Tentative assignments for 5 out of the 7 dimethyl lysine resonances could be obtained by comparing spectra of the fully and partially modified protein, with those of the proteolytic fragments. The pKa values measured for calcium saturated calmodulin ranged between 9.5 (Lys 75) and 10.2 (Lys 13); two residues (Lys 94 and Lys 13) showed a biphasic titration curve suggesting their possible involvement in ion-pairs. The dynamic behavior of the lysine side chains was deduced from spin lattice relaxation measurements. All side chains were flexible and this was not influenced by the removal of calcium, or the addition of the calmodulin antagonist trifluoperazine. The latter data suggest that the lysine side chains are not directly involved in calmodulin's target binding sites.

PMID: 8136020 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Interactions of protein side chains with RNA defined with REDOR solid state NMR.
Interactions of protein side chains with RNA defined with REDOR solid state NMR. Interactions of protein side chains with RNA defined with REDOR solid state NMR. J Biomol NMR. 2011 Sep 25; Authors: Huang W, Varani G, Drobny GP Abstract Formation of the complex between human immunodeficiency virus type-1 Tat protein and the transactivation response region (TAR) RNA is vital for transcriptional elongation, yet the structure of the Tat-TAR complex remains to be established. The NMR structures of free TAR, and TAR bound to Tat-derived...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Interactions of protein side chains with RNA defined with REDOR solid state NMR.
Interactions of protein side chains with RNA defined with REDOR solid state NMR. Interactions of protein side chains with RNA defined with REDOR solid state NMR. J Biomol NMR. 2011 Sep 25; Authors: Huang W, Varani G, Drobny GP Abstract Formation of the complex between human immunodeficiency virus type-1 Tat protein and the transactivation response region (TAR) RNA is vital for transcriptional elongation, yet the structure of the Tat-TAR complex remains to be established. The NMR structures of free TAR, and TAR bound to Tat-derived...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[CNS Yahoo group] Double protonated His side chains have charge +1 independent of pH
Double protonated His side chains have charge +1 independent of pH Hi all, I am using ccpn/aria/cns combination for my structural work. I discovered a probably bad fact during the aria/cns structure calculation. In the ccpn More...
nmrlearner News from other NMR forums 0 01-20-2011 03:28 AM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. J Am Chem Soc. 2010 Dec 27; Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner Journal club 0 12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja107847d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner Journal club 0 12-28-2010 05:27 AM
[NMR paper] The effects of mutations on motions of side-chains in protein L studied by 2H NMR dyn
The effects of mutations on motions of side-chains in protein L studied by 2H NMR dynamics and scalar couplings. Related Articles The effects of mutations on motions of side-chains in protein L studied by 2H NMR dynamics and scalar couplings. J Mol Biol. 2003 Jun 6;329(3):551-63 Authors: Millet O, Mittermaier A, Baker D, Kay LE Recently developed 2H spin relaxation experiments are applied to study the dynamics of methyl-containing side-chains in the B1 domain of protein L and in a pair of point mutants of the domain, F22L and A20V. X-ray and...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Determination of pKa values of the histidine side chains of phosphatidylinositol-spec
Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide
Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study. J Biol Chem. 1999 Mar 26;274(13):8411-20 Authors: Yuan T, Ouyang H, Vogel HJ Binding of calcium to calmodulin (CaM) causes a conformational...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:20 AM.


Map