BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-16-2016, 04:54 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,814
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Capturing a dynamic chaperone-substrate interaction using NMR-informed molecular modeling.

Capturing a dynamic chaperone-substrate interaction using NMR-informed molecular modeling.

Capturing a dynamic chaperone-substrate interaction using NMR-informed molecular modeling.

J Am Chem Soc. 2016 Jul 14;

Authors: Salmon L, Ahlstrom LS, Horowitz S, Dickson A, Brooks CL, Bardwell JC

Abstract
Chaperones maintain a healthy proteome by preventing aggregation and by aiding in protein folding. Precisely how chaperones influence the conformational properties of their substrates, however, remains unclear. To achieve a detailed description of dynamic chaperone-substrate interactions, we fused site-specific NMR information with coarse-grained simulations. Our model system is the binding and folding of a chaperone substrate, immunity protein 7 (Im7), with the chaperone Spy. We first used an automated procedure in which NMR chemical shifts inform the construction of system-specific force fields that describe each partner individually. The models of the two binding partners are then combined to perform simulations on the chaperone-substrate complex. The binding simulations show excellent agreement with experimental data from multiple biophysical measurements. Upon binding, Im7 interacts with a mixture of hydrophobic and hydrophilic residues on Spy's surface, causing conformational exchange within Im7 to slow down as Im7 folds. Meanwhile, the motion of Spy's flexible loop region increases, allowing for better interaction with different substrate conformations, and helping offset losses in Im7 conformational dynamics that occur upon binding and folding. Spy then preferentially releases Im7 into a well-folded state. Our strategy has enabled a residue-level description of a dynamic chaperone-substrate interaction, improving our understanding of how chaperones facilitate substrate folding. More broadly, we validate our approach using two other binding partners showing that this approach provides a general platform from which to investigate other flexible biomolecular complexes through the integration of NMR data with efficient computational models.


PMID: 27415450 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists.
Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Related Articles Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Prog Nucl Magn Reson Spectrosc. 2015 Apr;86-87C:41-64 Authors: Burmann BM, Hiller S Abstract The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and...
nmrlearner Journal club 0 04-29-2015 03:49 PM
Chaperones and chaperone–substrate complexes: Dynamic playgrounds for NMR spectroscopists
Chaperones and chaperone–substrate complexes: Dynamic playgrounds for NMR spectroscopists Publication date: April 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 86–87</br> Author(s): Björn M. Burmann , Sebastian Hiller</br> The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex...
nmrlearner Journal club 0 04-12-2015 02:40 AM
[NMR paper] Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods.
Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods....
nmrlearner Journal club 0 03-04-2014 06:37 PM
[NMR paper] Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers.
Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers. Related Articles Monitoring the interaction between ?2-microglobulin and the molecular chaperone ?B-crystallin by NMR and mass spectrometry. ?B-Crystallin dissociates ?2-microglobulin oligomers. J Biol Chem. 2013 May 3; Authors: Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJ, Carver JA...
nmrlearner Journal club 0 05-07-2013 01:30 PM
[NMR paper] An NMR study of the interaction between the human copper(I) chaperone and the second
An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. Related Articles An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J. 2005 Feb;272(3):865-71 Authors: Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] NMR and molecular modeling studies of the interaction between wheat germ agglutinin a
NMR and molecular modeling studies of the interaction between wheat germ agglutinin and the beta-D-GlcpNAc-(1-->6)-alpha-D-Manp epitope present in glycoproteins of tumor cells. Related Articles NMR and molecular modeling studies of the interaction between wheat germ agglutinin and the beta-D-GlcpNAc-(1-->6)-alpha-D-Manp epitope present in glycoproteins of tumor cells. Biochemistry. 2004 Aug 3;43(30):9647-54 Authors: Lycknert K, Edblad M, Imberty A, Widmalm G The beta-D-GlcpNAc-(1-->6)-alpha-D-Manp disaccharide is a constituent of highly...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with w
Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with water-NOE NMR experiments. Related Articles Solvent interaction of a Hsp70 chaperone substrate-binding domain investigated with water-NOE NMR experiments. Biochemistry. 2003 Sep 30;42(38):11100-8 Authors: Cai S, Stevens SY, Budor AP, Zuiderweg ER The interaction of solvent of the substrate binding domain of the bacterial heat shock 70 chaperone protein DnaK was studied in its apo form and with bound hydrophobic substrate peptide, using refined nuclear magnetic...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain:
NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Related Articles NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction. Biochemistry. 1998 Jun 2;37(22):7929-40 Authors: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER The solution structure of the 21 kDa substrate-binding domain of the Escherichia coli Hsp70-chaperone protein DnaK (DnaK 386-561) has been determined to a precision...
nmrlearner Journal club 0 11-17-2010 11:06 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:34 PM.


Map