BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-24-2019, 10:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,409
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins

Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins

Abstract

The isomerization of a covalently bound retinal is an integral part of both microbial and animal rhodopsin function. As such, detailed structure and conformational changes in the retinal binding pocket are of significant interest and are studied in various NMR, FTIR, and Raman spectroscopy experiments, which commonly require isotopic labeling of retinal. Unfortunately, the de novo organic synthesis of an isotopically-labeled retinal is complex and often cost-prohibitive, especially for large scale expression required for solid-state NMR. We present the novel protocol for biosynthetic production of an isotopically labeled retinal ligand concurrently with an apoprotein in E. coli as a cost-effective alternative to the de novo organic synthesis. Previously, the biosynthesis of a retinal precursor, β-carotene, has been introduced into many different organisms. We extended this system to the prototrophic E. coli expression strain BL21 in conjunction with the inducible expression of a β-dioxygenase and proteo-opsin. To demonstrate the applicability of this system, we were able to assign several new carbon resonances for proteorhodopsin-bound retinal by using fully 13C-labeled glucose as the sole carbon source. Furthermore, we demonstrated that this biosynthetically produced retinal can be extracted from E. coli cells by applying a hydrophobic solvent layer to the growth medium and reconstituted into an externally produced opsin of any desired labeling pattern.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Expression and NMR Structural Studies of Isotopically Labeled Cannabinoid Receptor Type II.
Expression and NMR Structural Studies of Isotopically Labeled Cannabinoid Receptor Type II. Related Articles Expression and NMR Structural Studies of Isotopically Labeled Cannabinoid Receptor Type II. Methods Enzymol. 2017;593:387-403 Authors: Yeliseev A, Gawrisch K Abstract Cannabinoid receptor type II (CB2) is an integral membrane protein with seven transmembrane helices that belongs to the large superfamily of rhodopsin-like G protein-coupled receptors. The CB2 is a part of the endocannabinoid system that plays a vital role in...
nmrlearner Journal club 0 07-29-2017 10:35 AM
[NMR paper] A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis.
A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis. Related Articles A Facile method for expression and purification of (15)N isotope-labeled human Alzheimer's ?-amyloid peptides from E. coli for NMR-based structural analysis. Protein Expr Purif. 2015 Jul 28; Authors: Sharma SC, Armand T, Aurelia Ball K, Chen A, Pelton JG, Wemmer DE, Head-Gordon T Abstract Alzheimer's disease (AD) is a progressive neurodegenerative disease...
nmrlearner Journal club 0 08-02-2015 08:22 PM
[NMR paper] A Cost-Effective Protocol for the Parallel Production of Libraries of (13)CH 3-Specifically Labeled Mutants for NMR Studies of High Molecular Weight Proteins.
A Cost-Effective Protocol for the Parallel Production of Libraries of (13)CH 3-Specifically Labeled Mutants for NMR Studies of High Molecular Weight Proteins. Related Articles A Cost-Effective Protocol for the Parallel Production of Libraries of (13)CH 3-Specifically Labeled Mutants for NMR Studies of High Molecular Weight Proteins. Methods Mol Biol. 2014;1091:229-44 Authors: Crublet E, Kerfah R, Mas G, Noirclerc-Savoye M, Lantez V, Vernet T, Boisbouvier J Abstract There is increasing interest in applying NMR spectroscopy to the study of...
nmrlearner Journal club 0 11-11-2013 01:30 AM
[NMR paper] Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR.
Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR. Biochim Biophys Acta. 2013 Feb;1828(2):595-601 Authors: Zhang J, Qu X, Covarrubias M,...
nmrlearner Journal club 0 04-05-2013 10:53 AM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin [Biophysics and Computational Biology]
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin Struts, A. V., Salgado, G. F. J., Brown, M. F.... Date: 2011-05-17 Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local psns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the...
nmrlearner Journal club 0 05-17-2011 08:40 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A. 2011 Apr 28; Authors: Struts AV, Salgado GF, Brown MF Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation...
nmrlearner Journal club 0 04-30-2011 12:36 PM
Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells
Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells Abstract The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolat
Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. Biochemistry. 1996 Dec 24;35(51):16843-51 Authors: Hoeltzli SD, Frieden C Escherichia coli dihydrofolate reductase (ecDHFR, EC1.5.1.3) contains 5 tryptophan residues that have...
nmrlearner Journal club 0 08-22-2010 02:20 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:53 PM.


Map