BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-01-2010, 06:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,077
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.

Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.

Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.

Biochemistry. 2005 Sep 6;44(35):11795-810

Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F

The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339) containing the third extracellular loop, the seventh transmembrane domain, and 40 residues of the cytosolic tail (E3-M7-24-T40) was biosynthesized fused to a carrier protein. The multidomain fusion protein (designated M7FP) was purified to near homogeneity as judged by HPLC and characterized by mass spectrometry. In minimal medium, 30-40 mg of M7FP were obtained per liter of culture. The 73-residue peptide was released from its carrier by CNBr and obtained in wild-type, (15)N, and (13)C/(15)N forms. The E3-M7-24-T40 peptide integrated into 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] and dodecylphosphocholine micelles at concentrations (200-500 microM) suitable for NMR investigations. HSQC experiments performed in organic solvents and detergent micelles on (15)N-labeled E3-M7-24-T40 showed a clear dispersion of the nitrogen-amide proton correlation cross-peaks indicative of a pure, uniformly labeled molecule that assumed a partially ordered structure. NOE connectivities, chemical shift indices, J-coupling analysis, and structural modeling suggested that in trifluoroethanol/water (1:1) helical subdomains existed in both the transmembrane and cytoslic tail of the multidomain peptide. Similar conclusions were reached in chloroform/methanol/water (4:4:1). As the cytosolic tail participates in down-regulation of Ste2p, the helical regions in the Ste2p tail may play a role in protein-protein interactions involved in endocytosis.

PMID: 16128581 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments.
Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Biochim Biophys Acta. 2011 Jul 23; Authors: Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a...
nmrlearner Journal club 0 07-28-2011 10:51 AM
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. J Proteome Res. 2010 Dec 3;9(12):6729-39 Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner Journal club 0 05-25-2011 07:01 PM
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. J Bioenerg Biomembr. 2011 Mar 12; Authors: Rishikesan S, Thaker YR, Grüber G The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner Journal club 0 03-15-2011 04:06 PM
[NMR paper] Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled r
Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor. Related Articles Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor. J Am Chem Soc. 2005 Jun 8;127(22):8010-1 Authors: Tian C, Breyer RM, Kim HJ, Karra MD, Friedman DB, Karpay A, Sanders CR The seven-transmembrane-spanning G protein-coupled receptor (GPCR) superfamily plays many important roles in basic biology, human health, and human disease. Here, well-resolved solution NMR spectra are presented for a human...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged he
The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy. Related Articles The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy. Nucleic Acids Res. 2003 Dec 15;31(24):7199-207 Authors: Ono K, Kusano O, Shimotakahara S, Shimizu M, Yamazaki T, Shindo H Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)
Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR. Related Articles Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR. FEBS Lett. 2000 Sep 29;482(1-2):25-30 Authors: Szabo CM, Sanders LK, Le HC, Chien EY, Oldfield E We have expressed -labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. J Mol Biol. 1999 Aug 20;291(3):661-9 Authors: Evans SP, Bycroft M In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Sac
Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Related Articles Structure of segments of a G protein-coupled receptor: CD and NMR analysis of the Saccharomyces cerevisiae tridecapeptide pheromone receptor. Biopolymers. 1998 Nov;46(6):343-57 Authors: Arshava B, Liu SF, Jiang H, Breslav M, Becker JM, Naider F Peptides representing both loop and the sixth transmembrane regions of the alpha-factor receptor of Saccharomyces cerevisiae were synthesized by...
nmrlearner Journal club 0 11-17-2010 11:15 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:41 PM.


Map