BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 01:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,697
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of t

Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors.

Related Articles Backbone amide dynamics studies of apo-L75F-TrpR, a temperature sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the 15N NMR relaxation profiles of wild type and A77V mutant apo-TrpR repressors.

Biochemistry. 2010 Aug 18;

Authors: Goel A, Tripet BP, Tyler RC, Nebert LD, Copie V

Backbone amide dynamics studies were conducted on a temperature sensitive mutant (L75F-TrpR) of the tryptophan repressor protein (TrpR) of E. coli in its apo (i.e. no L-tryptophan co-repressor-bound) form. The 15N NMR relaxation profiles of apo-L75F-TrpR were analyzed and compared to those of wild type (WT) and super-repressor mutant (A77V) TrpR proteins, also in their apo forms. The 15N NMR relaxation data (15N-T1, 15N-T2 and heteronuclear 15N-{1H}-nOe) recorded on all three apo-repressors at a magnetic field strength of 600 MHz (1H Larmor frequency) were analyzed to extract dynamics parameters including diffusion tensor ratios (D||/D perpendicular), correlation times (taum) for overall reorientations of the proteins in solution, reduced spectral density terms (Jeff(0), J(0.87omegaH), J(omegaN)) and generalized order parameters (S2), which report on protein internal motions on the ps-ns and slower mus-ms chemical exchange timescales. Our results indicate that all three apo-repressors exhibit comparable D||/D perpendicular ratios and characteristic time constants, taum, for overall global reorientation, indicating that in solution, all three apo-proteins display very similar overall shape, structure, and rotational diffusion properties. Comparison of 15N NMR relaxation data, reduced spectral density profiles, and generalized S2 order parameters indicated that these parameters are quite uniform for backbone amides positioned within the four (A, B, C, and F) core alpha-helices of all three apo-repressors. In contrast small but noticeable differences in internal dynamics were observed for backbone amides located within the helix D-turn-helix E DNA binding domain of the apo-TrpR proteins. The significance of these dynamics differences in terms of the biophysical characteristics and ligand-binding properties of the three apo-TrpR proteins is discussed.

PMID: 20718459 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Amide temperature coefficients in the protein G B1 domain
Amide temperature coefficients in the protein G B1 domain Abstract Temperature coefficients have been measured for backbone amide 1H and 15N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283â??313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pKa values. 1H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength...
nmrlearner Journal club 0 11-14-2011 08:45 AM
Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain
Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain Abstract Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13Câ?² longitudinal rate, and two cross-correlated rates involving dipolar and...
nmrlearner Journal club 0 03-20-2011 07:14 PM
[NMR paper] Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR
Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. Related Articles Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Reson. 2005 May;174(1):43-53 Authors: Chang SL, Tjandra N The NMR spin-lattice relaxation rate (R1) and the rotating-frame spin-lattice relaxation rate (R1rho) of amide 15N and carbonyl 13C (13C') of the uniformly 13C- and 15N-labeled ubiquitin were measured at different temperatures and field strengths to investigate the...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mu
Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein. Related Articles Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein. Biochemistry. 2002 Oct 8;41(40):11954-62 Authors: Tyler R, Pelczer I, Carey J, Copié V L75F-TrpR is a temperature-sensitive mutant of the tryptophan repressor protein of Escherichia coli in which surface-exposed residue leucine 75 in the DNA binding domain is replaced with...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of t
Backbone Amide Dynamics Studies of Apo-L75F-TrpR, a Temperature-Sensitive Mutant of the Tryptophan Repressor Protein (TrpR): Comparison with the 15N NMR Relaxation Profiles of Wild-Type and A77V Mutant Apo-TrpR Repressors http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100508u/aop/images/medium/bi-2010-00508u_0005.gifBiochemistry, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable). More...
nmrlearner Journal club 0 08-31-2010 10:50 PM
[NMR paper] Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies.
Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. Biochemistry. 1996 Apr 16;35(15):4867-77 Authors: MacKay JP, Shaw GL, King GF The backbone dynamics of the coiled-coil leucine zipper domain of c-Jun have been studied using proton-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation times,...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Backbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA meth
Backbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA methylphosphotriester repair domain of Escherichia coli Ada using NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Backbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA methylphosphotriester repair domain of Escherichia coli Ada using NMR. Biochemistry. 1996 Jul 23;35(29):9335-48 Authors: Habazettl J, Myers LC, Yuan F, Verdine GL, Wagner G The 10kDa amino-terminal fragment of...
nmrlearner Journal club 0 08-22-2010 02:20 PM
Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin
Abstract We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse Câ?²/Câ?²-Cα CSA/dipolar and Câ?²/Câ?²â??N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that Câ?² relaxation reports on a different subset of fast motions compared to those...
nmrlearner Journal club 0 08-14-2010 04:19 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:06 AM.


Map