BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-02-2021, 05:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default An automated iterative approach for protein structure refinement using pseudocontact shifts

An automated iterative approach for protein structure refinement using pseudocontact shifts

Abstract

NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites
Structure restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two different sites Abstract Pseudocontact shifts (PCS) encode long-range information on 3D structures of protein backbones and side-chains. The level of structural detail that can be obtained increases with the number of different sites tagged with a paramagnetic metal ion to generate PCSs. Here we show that PCSs from two different sites can suffice to determine the structure of polypeptide chains and their location and orientation relative to the magnetic...
nmrlearner Journal club 0 04-24-2017 01:14 AM
Integral membrane protein structure determination using pseudocontact shifts
Integral membrane protein structure determination using pseudocontact shifts Abstract Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary...
nmrlearner Journal club 0 01-21-2015 08:39 PM
Magic Angle Spinning NMR Structure Determination ofProteins from Pseudocontact Shifts
Magic Angle Spinning NMR Structure Determination ofProteins from Pseudocontact Shifts Jianping Li, Kala Bharath Pilla, Qingfeng Li, Zhengfeng Zhang, Xuncheng Su, Thomas Huber and Jun Yang http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4021149/aop/images/medium/ja-2013-021149_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja4021149 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/c9Z9YUt3Pp8
nmrlearner Journal club 0 05-24-2013 10:44 PM
[NMR paper] Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts.
Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts. Related Articles Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts. J Am Chem Soc. 2013 May 6; Authors: Li J, Pilla KB, Li Q, Zhang Z, Su X, Huber T, Yang J Abstract Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number...
nmrlearner Journal club 0 05-08-2013 02:49 PM
[NMR paper] The impact of direct refinement against proton chemical shifts on protein structure d
The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. Related Articles The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. J Magn Reson B. 1995 Jun;107(3):293-7 Authors: Kuszewski J, Gronenborn AM, Clore GM
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Protein structure refinement based on paramagnetic NMR shifts: applications to wild-t
Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. Protein Sci. 1995 Feb;4(2):296-305 ...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] NMR chemical shifts and structure refinement in proteins.
NMR chemical shifts and structure refinement in proteins. Related Articles NMR chemical shifts and structure refinement in proteins. J Biomol NMR. 1993 Sep;3(5):607-12 Authors: Laws DD, de Dios AC, Oldfield E Computation of the 13C alpha chemical shifts (or shieldings) of glycine, alanine and valine residues in bovine and Drosophila calmodulins and Staphylococcal nuclease, and comparison with experimental values, is reported using a gauge-including atomic orbital quantum-chemical approach. The full approximately 24 ppm shielding range is...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] "Ensemble" iterative relaxation matrix approach: a new NMR refinement protocol applie
"Ensemble" iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of crambin. Related Articles "Ensemble" iterative relaxation matrix approach: a new NMR refinement protocol applied to the solution structure of crambin. Proteins. 1993 Apr;15(4):385-400 Authors: Bonvin AM, Rullmann JA, Lamerichs RM, Boelens R, Kaptein R The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:48 PM.


Map