BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-19-2014, 06:59 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations.

Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations.

Related Articles Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations.

Biophys J. 2014 Jun 17;106(12):2566-2576

Authors: De Simone A, Mote KR, Veglia G

Abstract
Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes.


PMID: 24940774 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations
Structural Dynamics and Conformational Equilibria of SERCA Regulatory Proteins in Membranes by Solid-State NMR Restrained Simulations Publication date: 17 June 2014 Source:Biophysical Journal, Volume 106, Issue 12</br> Author(s): Alfonso De*Simone , Kaustubh*R. Mote , Gianluigi Veglia</br> Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters....
nmrlearner Journal club 0 06-18-2014 06:09 PM
Solid-State NMR Structural Measurements and Models of the HIV and Influenza Fusion Proteins in Membranes
Solid-State NMR Structural Measurements and Models of the HIV and Influenza Fusion Proteins in Membranes Publication date: 28 January 2014 Source:Biophysical Journal, Volume 106, Issue 2, Supplement 1</br> Author(s): David P. Weliky</br> </br></br> </br></br> More...
nmrlearner Journal club 0 01-29-2014 12:50 AM
[NMR paper] NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations. NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations. J Phys Chem B. 2013 May 2; Authors: Xia J, Deng NJ, Levy RM Abstract Calculating NMR relaxation effects for proteins with dynamics on multiple timescales generally requires very long trajectories based on conventional molecular dynamics simulations. In this report,...
nmrlearner Journal club 0 05-04-2013 09:18 PM
[NMR paper] Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins.
Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Assessment of the Use of NMR Chemical Shifts as Replica-Averaged Structural Restraints in Molecular Dynamics Simulations to Characterize the Dynamics of Proteins. J Phys Chem B. 2013 Feb 1; Authors: Camilloni C, Cavalli A, Vendruscolo M Abstract It has been recently...
nmrlearner Journal club 0 02-03-2013 10:19 AM
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR.
In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR. In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State MAS NMR. J Am Chem Soc. 2011 Jul 21; Authors: Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F The feasibility of using solid state MAS NMR for in situ structural characterization of the LR11 (sorLA) transmembrane domain in native Escherichia coli (E. coli) membranes is presented. LR11 interacts with...
nmrlearner Journal club 0 07-23-2011 08:54 AM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations. Eur Biophys J. 2011 Jan 28; Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations.
Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Related Articles Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J. 2005 Sep;89(3):2113-20 Authors: Heise H, Luca S, de Groot BL, Grubmüller H, Baldus M An approach is introduced to characterize conformational ensembles of intrinsically unstructured peptides on the atomic level using two-dimensional solid-state NMR data and...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics sim
Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide Related Articles Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide J Comput Aided Mol Des. 1996 Jun;10(3):213-32 Authors: Buono RA, Kucharczyk N, Neuenschwander M, Kemmink J, Hwang LY, Fauchère JL, Venanzi CA The design of enzyme mimics with therapeutic and industrial applications has interested both experimental and computational chemists for several...
nmrlearner Journal club 0 08-22-2010 02:27 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:21 PM.


Map